Featured Research

from universities, journals, and other organizations

Plant Biologists Discover Gene That Switches On 'Essence Of Male'

Date:
March 20, 2009
Source:
University of Leicester
Summary:
Biologists have completed a new study into plant sex -- and discovered that a particular gene switches on 'the essence of male'. The study takes to a new level understanding of the genes needed for successful plant reproduction and seed production.

Pictured is a confocal image of an Arabidopsis pollen grain showing ectopic GFP expression in the pollen vegetative cell (outlined in red with large single green nucleus) under control of the normally male germ cell-specific histone H3 (MGH3) promoter (pair of green sperm cell nuclei). The MGH3 promoter is induced by the ectopic expression of the germline-specific transcription factor DUO1 in the pollen vegetative cell. The authors show that germ cell mitosis and specification are regulated by DUO1, including the expression of cell cycle and gamete fusion proteins. Thus DUO1 has a key integrative role linking germ cell division and sperm cell differentiation in flowering plants.
Credit: Image generated by Lynette Brownfield (University of Leicester)

Biologists at the University of Leicester have published results of a new study into plant sex – and discovered that a particular gene switches on 'the essence of male'. The study takes to a new level understanding of the genes needed for successful plant reproduction and seed production.

Professor David Twell and colleagues in the Department of Biology at the University of Leicester reported the discovery of a gene that has a critical role in allowing precursor reproductive cells to divide to form twin sperm cells.

Their study is reported in the journal Public Library of Science Genetics (PLoS Genetics) and was funded by the Biotechnology and Biological Sciences Research Council (BBSRC).

Professor Twell said: "Flowering plants, unlike animals require not one, but two sperm cells for successful fertilisation. One sperm cell to join with the egg cell to produce the embryo and the other to join with the central cell to produce the nutrient-rich endosperm tissue inside the seed. A mystery in this 'double fertilisation' process was how each single pollen grain could produce the pair of sperm cells needed for fertility and seed production.

"We now report the discovery of a dual role for DUO1, a regulatory gene required for plant sperm cell production. We show that the DUO1 gene is required to promote the division of sperm precursor cells, while at the same time promoting their specialised function as sperm cells. It effectively switches on the essence of male.

"We show that DUO1 is required for the expression of a key protein that controls cell division and for the expression of genes that are critical for gamete differentiation and fertilisation.

"This work provides the first molecular insight into the mechanisms through which cell cycle progression and gamete differentiation are coordinated in flowering plants.

"This knowledge will be helpful in understanding the mechanisms and evolution of gamete development in flowering plants and may be useful in the control of gene flow and crossing behaviour in crop plants."

The researchers also report on the presence of genes closely related to DUO1 in a wide variety of flowering plants and even in lowly land plants such as moss, which suggests that DUO1 may be part of an ancient sperm cell regulatory network that evolved even before pollen and flowers appeared on the scene.

Interestingly, DUO1 is also related to a super class of Myb regulator proteins also present in animals that have an important role in controlling cell proliferation and that are implicated in certain human cancers such as leukemias. So like animal cell Myb proteins, DUO1 is needed for control of cell proliferation, but DUO1 is distinguished by its specific role in plant reproduction, namely its dual role in sperm cell production and switching on their ability to fertilize.

Professor Twell added that the study could help to unravel the evolutionary origins of plant sperm cells and provide new molecular tools for the manipulation of plant fertility and hybrid seed production – as well as to control gene flow in transgenic crops where the male contribution may need to be eliminated.

Background

The unique double fertilisation mechanism in flowering plants depends upon a pair of functional sperm cells. During male gametogenesis, each haploid microspore undergoes an asymmetric division to produce a large, non-germline vegetative cell and a single germ cell that divides once to produce the sperm cell pair. Despite the importance of sperm cells in plant reproduction, relatively little is known about the molecular mechanisms controlling germ cell proliferation and specification.


Story Source:

The above story is based on materials provided by University of Leicester. Note: Materials may be edited for content and length.


Cite This Page:

University of Leicester. "Plant Biologists Discover Gene That Switches On 'Essence Of Male'." ScienceDaily. ScienceDaily, 20 March 2009. <www.sciencedaily.com/releases/2009/03/090319224538.htm>.
University of Leicester. (2009, March 20). Plant Biologists Discover Gene That Switches On 'Essence Of Male'. ScienceDaily. Retrieved September 14, 2014 from www.sciencedaily.com/releases/2009/03/090319224538.htm
University of Leicester. "Plant Biologists Discover Gene That Switches On 'Essence Of Male'." ScienceDaily. www.sciencedaily.com/releases/2009/03/090319224538.htm (accessed September 14, 2014).

Share This



More Plants & Animals News

Sunday, September 14, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Conservationists Face Uphill PR Battle With New Shark Rules

Conservationists Face Uphill PR Battle With New Shark Rules

Newsy (Sep. 14, 2014) — New conservation measures for shark fishing face an uphill PR battle in the fight to slow shark extinction. Video provided by Newsy
Powered by NewsLook.com
Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) — A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com
'Magic Mushrooms' Could Help Smokers Quit

'Magic Mushrooms' Could Help Smokers Quit

Newsy (Sep. 11, 2014) — In a small study, researchers found that the majority of long-time smokers quit after taking psilocybin pills and undergoing therapy sessions. Video provided by Newsy
Powered by NewsLook.com
Spinosaurus Could Be First Semi-Aquatic Dinosaur

Spinosaurus Could Be First Semi-Aquatic Dinosaur

Newsy (Sep. 11, 2014) — New research has shown that the Spinosaurus, the largest carnivorous dinosaur, might have been just as well suited for life in the water as on land. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins