Featured Research

from universities, journals, and other organizations

New Nucleotide In DNA Could Revolutionize Epigenetics

Date:
April 17, 2009
Source:
Rockefeller University
Summary:
Anyone who studied a little genetics in high school has heard of adenine, thymine, guanine and cytosine -- the A, T, G and C that make up the DNA code. But those are not the whole story. The rise of epigenetics in the past decade has drawn attention to a fifth nucleotide, 5-methylcytosine, that sometimes replaces cytosine in the famous DNA double helix to regulate which genes are expressed. And now there's a sixth: 5-hydroxymethylcytosine. Biologists reveal an additional character in the mammalian DNA code, opening an entirely new front in epigenetic research.

Chemical structure of cytosine, one of the four nucleotide bases that make up DNA. New research shows that two additional nucleotides -- 5-methylcytosine and 5-hydroxymethylcytosine -- can sometimes replace cytosine in the DNA double helix to regulate which genes are expressed.
Credit: Wikimedia Commons

Anyone who studied a little genetics in high school has heard of adenine, thymine, guanine and cytosine – the A, T, G and C that make up the DNA code. But those are not the whole story. The rise of epigenetics in the past decade has drawn attention to a fifth nucleotide, 5-methylcytosine (5-mC), that sometimes replaces cytosine in the famous DNA double helix to regulate which genes are expressed. And now there's a sixth: 5-hydroxymethylcytosine.

Related Articles


In experiments to be published online April 16 by Science, researchers reveal an additional character in the mammalian DNA code, opening an entirely new front in epigenetic research.

The work, conducted in Nathaniel Heintz's Laboratory of Molecular Biology at The Rockefeller University, suggests that a new layer of complexity exists between our basic genetic blueprints and the creatures that grow out of them. "This is another mechanism for regulation of gene expression and nuclear structure that no one has had any insight into," says Heintz, who is also a Howard Hughes Medical Institute investigator. "The results are discrete and crystalline and clear; there is no uncertainty. I think this finding will electrify the field of epigenetics."

Genes alone cannot explain the vast differences in complexity among worms, mice, monkeys and humans, all of which have roughly the same amount of genetic material. Scientists have found that these differences arise in part from the dynamic regulation of gene expression rather than the genes themselves. Epigenetics, a relatively young and very hot field in biology, is the study of nongenetic factors that manage this regulation.

One key epigenetic player is DNA methylation, which targets sites where cytosine precedes guanine in the DNA code. An enzyme called DNA methyltransferase affixes a methyl group to cytosine, creating a different but stable nucleotide called 5-methylcytosine. This modification in the promoter region of a gene results in gene silencing.

Some regional DNA methylation occurs in the earliest stages of life, influencing differentiation of embryonic stem cells into the different cell types that constitute the diverse organs, tissues and systems of the body. Recent research has shown, however, that environmental factors and experiences, such as the type of care a rat pup receives from its mother, can also result in methylation patterns and corresponding behaviors that are heritable for several generations. Thousands of scientific papers have focused on the role of 5-methylcytosine in development.

The discovery of a new nucleotide may make biologists rethink their approaches to investigating DNA methylation. Ironically, the latest addition to the DNA vocabulary was found by chance during investigations of the level of 5-methylcytosine in the very large nuclei of Purkinje cells, says Skirmantas Kriaucionis, a postdoctoral associate in the Heintz lab, who did the research. "We didn't go looking for this modification," he says. "We just found it."

Kriaucionis was working to compare the levels of 5-methylcytosine in two very different but connected neurons in the mouse brain — Purkinje cells, the largest brain cells, and granule cells, the most numerous and among the smallest. Together, these two types of cells coordinate motor function in the cerebellum. After developing a new method to separate the nuclei of individual cell types from one another, Kriaucionis was analyzing the epigenetic makeup of the cells when he came across substantial amounts of an unexpected and anomalous nucleotide, which he labeled 'x.'

It accounted for roughly 40 percent of the methylated cytosine in Purkinje cells and 10 percent in granule neurons. He then performed a series of tests on 'x,' including mass spectrometry, which determines the elemental components of molecules by breaking them down into their constituent parts, charging the particles and measuring their mass-to-charge ratio. He repeated the experiments more than 10 times and came up with the same result: x was 5-hydroxymethylcytosine, a stable nucleotide previously observed only in the simplest of life forms, bacterial viruses. A number of other tests showed that 'x' could not be a byproduct of age, DNA damage during the cell-type isolation procedure or RNA contamination. "It's stable and it's abundant in the mouse and human brain," Kriaucionis says. "It's really exciting."

What this nucleotide does is not yet clear. Initial tests suggested that it may play a role in demethylating DNA, but Kriaucionis and Heintz believe it may have a positive role in regulating gene expression as well. The reason that this nucleotide had not been seen before, the researchers say, is because of the methodologies used in most epigenetic experiments. Typically, scientists use a procedure called bisulfite sequencing to identify the sites of DNA methylation. But this test cannot distinguish between 5-hydroxymethylcytosine and 5-methylcytosine, a shortcoming that has kept the newly discovered nucleotide hidden for years, the researchers say. Its discovery may force investigators to revisit earlier work. The Human Epigenome Project, for example, is in the process of mapping all of the sites of methylation using bisulfite sequencing. "If it turns out in the future that (5-hydroxymethylcytosine and 5-methylcytosine) have different stable biological meanings, which we believe very likely, then epigenome mapping experiments will have to be repeated with the help of new tools that would distinguish the two," says Kriaucionis.

Providing further evidence for their case that 5-hydroxymethylcytosine is a serious epigenetic player, a second paper to be published in Science by an independent group at Harvard reveals the discovery of genes that produce enzymes that specifically convert 5-methylcytosine into 5-hydroxymethylcytosine. These enzymes may work in a way analogous to DNA methyltransferase, suggesting a dynamic system for regulating gene expression through 5-hydroxymethylcytosine. Kriaucionis and Heintz did not know of the other group's work, led by Anjana Rao, until earlier this month. "You look at our result, and the beautiful studies of the enzymology by Dr. Rao's group, and realize that you are at the tip of an iceberg of interesting biology and experimentation," says Heintz, a neuroscientist whose research has not focused on epigenetics in the past. "This finding of an enzyme that can convert 5-methylcytosine to 5-hydroxymethylcytosine establishes this new epigenetic mark as a central player in the field."

Kriaucionis is now mapping the sites where 5-hydroxymethylcytosine is present in the genome, and the researchers plan to genetically modify mice to under- or overexpress the newfound nucleotide in specific cell types in order to study its effects. "This is a major discovery in the field, and it is certain to be tied to neural function in a way that we can decipher," Heintz says.


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Skirmantas Kriaucionis and Nathaniel Heintz. The Nuclear DNA Base 5-Hydroxymethylcytosine Is Present in Purkinje Neurons and the Brain. Science, 2009; DOI: 10.1126/science.1169786

Cite This Page:

Rockefeller University. "New Nucleotide In DNA Could Revolutionize Epigenetics." ScienceDaily. ScienceDaily, 17 April 2009. <www.sciencedaily.com/releases/2009/04/090416144639.htm>.
Rockefeller University. (2009, April 17). New Nucleotide In DNA Could Revolutionize Epigenetics. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2009/04/090416144639.htm
Rockefeller University. "New Nucleotide In DNA Could Revolutionize Epigenetics." ScienceDaily. www.sciencedaily.com/releases/2009/04/090416144639.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins