Featured Research

from universities, journals, and other organizations

Computational Biology Illuminates How Cells Change Gears

Date:
April 27, 2009
Source:
University of California - San Diego
Summary:
Bioinformatics researchers just moved closer to unlocking the mystery of how human cells switch from "proliferation mode" to "specialization mode." This computational biology work could lead to new ideas for curbing unwanted cell proliferation -- including some cancers. This research could also improve our understanding of how organs and other complex tissues develop.

This is figure 5 from a Nature Genetics paper published online April 19, 2009.
Credit: Nature Genetics

Bioinformatics researchers from UC San Diego just moved closer to unlocking the mystery of how human cells switch from "proliferation mode" to "specialization mode." This computational biology work from the Jacobs School of Engineering's bioengineering department could lead to new ideas for curbing unwanted cell proliferation—including some cancers.

This research, published in Nature Genetics, could also improve our understanding of how organs and other complex tissues develop.

The UC San Diego bioengineers are part of a Japan-based global research consortium, the Genome Network Project, which generated one of the first close-to-comprehensive looks at a human cell's entire network of proteins called "transcription factors." Each human cell contains approximately 2,000 transcription factors, which are proteins that bind to specific locations on the cell's DNA. Once bound to DNA, transcription factors work to either encourage or prevent "transcription"—the process by which messenger RNA is generated from DNA. These messenger RNA strands then travel to cellular factories called ribosomes which churn out proteins based on the specifications of the mRNA.

"Transcription is one of the most important events in the cell…it determines cell morphology and cell function," said Timothy Ravasi, a UC San Diego research scientist from the bioengineering department and author on the new Nature Genetics paper.

Researchers have long understood that most transcription factors in human cells do not work alone, but studying the entire network of transcription factors within a cell has been difficult until now. In the new study, the researchers used a series of computational and integrative biology approaches in order to look at how the activity of the network of transcription factors in a myeloid leukemia cell line changes over time.

"Leukemia" refers to a variety of pathologies involving uncontrolled proliferation of white blood cells. Understanding the role of the transcriptional network during differentiation in leukemia cells could offer a glimpse into the cause of leukemia, or offer possible approaches for treating leukemia, according to Ravasi.

During the laboratory phase of the project, researchers introduced a compound that stopped cell proliferation in the myeloid leukemia cell line. Next, they collected as much information as possible regarding the activity of the transcription factor network during the processes of differentiation and maturation into immune cells known as monocytes and macrophages. Computational work performed at UC San Diego after all the laboratory data had been collected allowed the researchers to identify specific subnetworks of transcription factors that were activated at particular time points.

Integrative Biology

The UCSD researchers were challenged to integrate different but related data sets in order to tease out real signals from noise. This is known as "integrative biology."

"We take lots of measurements of the same thing…we integrate them together," which leads to higher confidence in experimental results, Ravasi explained. Measuring both messenger RNA and protein levels, is one example. Detection of both signals provides two independent data points indicating the presence of the same protein.

"Getting to be the first to analyze and make sense of this large and fascinating data set was a huge opportunity," said Ravasi. The UC San Diego bioinformatics team working on this project included Ravasi and two post-doctoral researchers from Trey Ideker's bioengineering laboratory, Ariel Schwartz, now at Synthetic Genomics, and Kai Tan, now an assistant professor of internal medicine and biomedical engineering at the University of Iowa.

By monitoring the activity of the transcriptional network one hour after the onset of differentiation, the researchers identified a gene that appears to play an important role in cell differentiation in white blood cells. "It's a long shot, but if you found a compound that inhibits this gene, you could make the cells begin to differentiate towards a normal monoblast line rather than continue unchecked cell proliferation," said Ravasi.

Resilient and Redundant

Based on the new research, it appears that the network of transcription factors from the human myeloid leukemia cell line is redundant and resilient, explained Ravasi.

The researchers turned-off or "knocked down" 52 transcription factors, one at a time, in order to study their individual role within the network. Most of the single knock-downs did not result in changes to cell differentiation or cell shape.

"The transcriptional network for this cell type appears quite redundant which likely makes the network resilient to mutations or environmental agents that could interfere with transcription factor function," said Ravasi. "My guess is that we will find similar redundancy in the transcription networks of other cell lines, and in the transcription networks that regulate other aspects of cell function, but we can't say that from these data."


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Computational Biology Illuminates How Cells Change Gears." ScienceDaily. ScienceDaily, 27 April 2009. <www.sciencedaily.com/releases/2009/04/090420182226.htm>.
University of California - San Diego. (2009, April 27). Computational Biology Illuminates How Cells Change Gears. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2009/04/090420182226.htm
University of California - San Diego. "Computational Biology Illuminates How Cells Change Gears." ScienceDaily. www.sciencedaily.com/releases/2009/04/090420182226.htm (accessed October 21, 2014).

Share This



More Plants & Animals News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins