Featured Research

from universities, journals, and other organizations

Lasers Used To Induce Gamma Brain Waves In Mice

Date:
May 1, 2009
Source:
Massachusetts Institute of Technology
Summary:
Scientists have studied high-frequency brain waves, known as gamma oscillations, for more than 50 years, believing them crucial to consciousness, attention, learning and memory. Now, for the first time, researchers have found a way to induce these waves by shining laser light directly onto the brains of mice.

Scientists have studied high-frequency brain waves, known as gamma oscillations, for more than 50 years, believing them crucial to consciousness, attention, learning and memory. Now, for the first time, MIT researchers and colleagues have found a way to induce these waves by shining laser light directly onto the brains of mice.

Related Articles


The work takes advantage of a newly developed technology known as optogenetics, which combines genetic engineering with light to manipulate the activity of individual nerve cells. The research helps explain how the brain produces gamma waves and provides new evidence of the role they play in regulating brain functions — insights that could someday lead to new treatments for a range of brain-related disorders.

"Gamma waves are known to be [disrupted] in people with schizophrenia and other psychiatric and neurological diseases," says Li-Huei Tsai, Picower Professor of Neuroscience and a Howard Hughes Medical Institute investigator. "This new tool will give us a great chance to probe the function of these circuits."

Tsai co-authored a paper about the work that appears in the April 26 online issue of Nature.

Gamma oscillations reflect the synchronous activity of large interconnected networks of neurons, firing together at frequencies ranging from 20 to 80 cycles per second. "These oscillations are thought to be controlled by a specific class of inhibitory cells known as fast-spiking interneurons," says Jessica Cardin, co-lead author on the study and a postdoctoral fellow at MIT's McGovern Institute for Brain Research. "But until now, a direct test of this idea was not possible."

To determine which neurons are responsible for driving the oscillations, the researchers used a protein called channelrhodopsin-2 (ChR2), which can sensitize neurons to light. "By combining several genetic tricks, we were able to express ChR2 in different classes of neurons, allowing us to manipulate their activity with precise timing via a laser and an optical fiber over the brain," explains co-lead author Marie Carlιn, a postdoctoral fellow at the Picower Institute.

The trick for inducing gamma waves was the selective activation of the "fast-spiking" interneurons, named for their characteristic pattern of electrical activity. When these cells were driven with high frequency laser pulses, the illuminated region of cortex started to produce gamma oscillations. "We've shown for the first time that it is possible to induce a specific brain state by activating a specific cell type" says co-author Christopher Moore, associate professor of neuroscience and an investigator in the McGovern Institute. In contrast, no gamma oscillations were induced when the fast-spiking interneurons were activated at low frequencies, or when a different class of neurons was activated.

The authors further showed that these brain rhythms regulate the processing of sensory signals. They found that the brain's response to a tactile stimulus was greater or smaller depending on exactly where the stimulus occurred within the oscillation cycle. "It supports the idea that these synchronous oscillations are important for controlling how we perceive stimuli," says Moore. "Gamma rhythms might serve to make a sound louder, or a visual input brighter, all based on how these patterns regulate brain circuits."

Because this new approach required a merger of expertise from neuroscience and molecular genetics, three different laboratories contributed to its completion. In addition to Tsai, Moore and Carlιn of MIT, co-authors include Jessica Cardin, research affiliate at the McGovern Institute and the University of Pennsylvania, and Karl Deisseroth and Feng Zhang at Stanford University. Other co-authors were Konstantinos Meletis, a postdoctoral fellow at the Picower Institute, and Ulf Knoblich, a graduate student in MIT's Department of Brain and Cognitive Sciences.

This work was supported by NARSAD, the National Institutes of Health, the National Science Foundation, the Thomas F. Peterson fund, the Simons Foundation Autism Research Initiative and the Knut and Alice Wallenberg Foundation.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Lasers Used To Induce Gamma Brain Waves In Mice." ScienceDaily. ScienceDaily, 1 May 2009. <www.sciencedaily.com/releases/2009/04/090426175653.htm>.
Massachusetts Institute of Technology. (2009, May 1). Lasers Used To Induce Gamma Brain Waves In Mice. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2009/04/090426175653.htm
Massachusetts Institute of Technology. "Lasers Used To Induce Gamma Brain Waves In Mice." ScienceDaily. www.sciencedaily.com/releases/2009/04/090426175653.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) — Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com
You Don't Have To Be Alcohol Dependent To Need Treatment

You Don't Have To Be Alcohol Dependent To Need Treatment

Newsy (Nov. 21, 2014) — A study by the Centers for Disease Control and Prevention found 9 out of 10 excessive drinkers in the country are not alcohol dependent. Video provided by Newsy
Powered by NewsLook.com
Your Complicated Job Might Keep Your Brain Young

Your Complicated Job Might Keep Your Brain Young

Newsy (Nov. 20, 2014) — Researchers at the University of Edinburgh found the more complex your job is, the sharper your cognitive skills will likely be as you age. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins