Featured Research

from universities, journals, and other organizations

Mosquito Parasite May Help Fight Dengue Fever

Date:
May 8, 2009
Source:
Journal of Experimental Biology
Summary:
Many mosquitoes living in tropical regions carry a lethal plague: dengue fever. Despite attempts, no successful dengue fever vaccine has been found, so scientists have infected them with a parasite with the hope of reducing the insects' life expectancy and reducing dengue fever infection. Now they have found that as well as reducing the insects' lifespan, the parasite increases the mosquitoes' activity.

Dengue fever is a terrible viral disease blighting many of the world's tropical regions. Carried by mosquitoes, such as Aedes aegypti, 40% of the world's population is believed to be at risk from the infection. What is more, previous exposure to other strains of the fever does not confer protection. In fact, subsequent infections are significantly worse, and can result in fatal dengue haemorrhagic fever.

The lack of a functioning vaccine forced Scott O'Neill and Elizabeth McGraw to look for a more creative form of defence. Knowing that a parasite, Wolbachia pipientis, shortens the lifespan of host insects and could restrict dengue fever transmission by killing the insects before they can pass the infection on, O'Neill and his team successfully infected Ae. aegypti with a strain of the Wolbachia bacterium and shortened the mosquitoes' lifespan.

But before insects carrying the bacterium can be released into the environment, the O'Neill and McGraw teams have to convince international governments that mosquitoes carrying the Wolbachia parasite could successfully limit transmission of the virus. McGraw and O'Neill had to find out how the bacterium affects the mosquito's physiology and behaviour.

Knowing that Wolbachia slows down some insects' activity and speeds up others, the team decided to test how the parasite affects Ae. aegypti as they age and the infection takes hold. Working with uninfected and infected mosquitoes produced by Conor McMeniman, Oliver Evans and Eric Caragata used a system designed by Craig Williams to film the activities of male and female mosquitoes as they aged to find how the bacteria affected the insects' activity levels. According to McGraw, the experiments generated a huge amount of video data, so Evans teamed up with Megan Woolfit and David Green to pipe the data to a cluster of workstations to track the insects' movements and analyse their activity levels.

After a year of experimental design, data collection and analysis, it was clear that the infected mosquitoes were more active than the uninfected insects. Most surprisingly, as the mosquitoes aged and the infection took hold, it did not increase their activity levels further.

Having found that the insects became more active in response to their bacterial lodgers, Craig Franklin joined the team to help measure the insects' CO2 production to find how their metabolic rates respond to the parasite. Again, the insects' metabolic rates were higher than those of the uninfected mosquitoes.

So why are the infected insects more active than the uninfected insects? McGraw says there are three possible explanations; the insects are living fast and dying young; the insects are hungrier and consume more energy in their constant search for food; or the bacteria somehow affect the insects' tissues to change their behaviour and increase their metabolic rate. McGraw suspects that the last explanation is the most likely.

Having shown that the activity levels of Wolbachia infected mosquitoes respond to the bacterium, McGraw and O'Neill are continuing to test how the infection affects the insects' biting behaviour and whether a Wolbachia infection can become established in Ae. aegypti populations to limit their lifespans. Ultimately, McGraw and O'Neill hope to release infected mosquitoes into afflicted regions of the world to limit dengue fever transmission, but only once they are sure that the insects will do no harm to the environment.


Story Source:

The above story is based on materials provided by Journal of Experimental Biology. The original article was written by Kathryn Knight. Note: Materials may be edited for content and length.


Journal Reference:

  1. Evans, O., Caragata, E. P., McMeniman, C. J., Woolfit, M., Green, D. C., Williams, C. R., Franklin, C. E., O'Neill, S. L. and McGraw, E. A. Increased locomotor activity and metabolism of Aedes aegypti infected with a life-shortening strain of Wolbachia pipientis. J. Exp. Biol., 212, 1436-1441

Cite This Page:

Journal of Experimental Biology. "Mosquito Parasite May Help Fight Dengue Fever." ScienceDaily. ScienceDaily, 8 May 2009. <www.sciencedaily.com/releases/2009/05/090501090910.htm>.
Journal of Experimental Biology. (2009, May 8). Mosquito Parasite May Help Fight Dengue Fever. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2009/05/090501090910.htm
Journal of Experimental Biology. "Mosquito Parasite May Help Fight Dengue Fever." ScienceDaily. www.sciencedaily.com/releases/2009/05/090501090910.htm (accessed April 17, 2014).

Share This



More Plants & Animals News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com
Raw: Three Rare White Tiger Cubs Debut at Zoo

Raw: Three Rare White Tiger Cubs Debut at Zoo

AP (Apr. 16, 2014) The Buenos Aires Zoo debuted a trio of rare white Bengal tiger cubs on Wednesday. (April 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins