Featured Research

from universities, journals, and other organizations

Biotechnology: Engineered Moss Can Produce Human Proteins

Date:
May 11, 2009
Source:
ETH Zurich
Summary:
Researchers have shown that mosses and humans share unexpected common characteristics. These evolutionary relics could be useful in the production of therapeutic proteins.

The bryophyte Physcomitrella patens.
Credit: AG Reski / University of Freiburg im Breisgau

ETH Zurich researchers have shown that mosses and humans share unexpected common characteristics. These evolutionary relics could be useful in the production of therapeutic proteins.

At first glance, mosses and human beings have little in common. The moss Physcomitrella patens is small, pale green, immobile, and uses sunlight as its energy source. Humans are large, mobile, and need to obtain energy by eating vegetable or animal foods.

Transferring mammalian genes into moss

This made the result of the experiments carried out by researchers in the group led by Martin Fussenegger, Professor of Chemical and Bioengineering at ETH Zurich, all the more astonishing. In collaboration with researchers at the University of Freiburg im Breisgau, the PhD student Marc Gitzinger carried out tests to see what happens when unmodified human or mammalian genes are inserted into the moss genome. They transferred the foreign, unmodified genes into the moss and discovered that the moss was easily able to manufacture the proteins encoded therein.

This cannot be taken for granted, since the same process does not work when a mammalian gene is implanted into what are known as “higher” flowering plants. The reason is that sections of the start and finish sequences of the genes of animals, plants, fungi and bacteria are considerably different. They are responsible for ensuring that a gene in the organism is recognized as such, and the proteins encoded by it are produced in the correct amount and are released from the cell. The more remote the relationship between living organisms, the greater the difference between these sequences. This is why biotechnologists must normally adapt them to a foreign organism before transplanting a gene into it. The researchers were astonished to find that this was not necessary in the case of the moss.

Moss as a generalist

The explanation given for this by Ralf Reski, Professor of Plant Biotechnology at the University of Freiburg im Breisgau, is that the moss has remained a generalist. It underwent the last major modification about 450 million years ago when it changed from living in water to a life on land, adapting to the new living conditions and then remaining unaltered for millions of years, both in its appearance and at a genetic level.

The process used by the moss to produce its proteins is less sophisticated than in “higher” organisms. In contrast to the moss, these latter organisms underwent major further developments and specializations over the course of 450 million years. On the other hand, the moss clearly retained – for millions of years – the ability to read foreign genes such as those from mammals and thus also from humans, and to translate them into proteins, probably without ever having made any use of this capability during these 450 million years.

A cost-effective alternative to mammalian cells

Today, the moss Physcomitrella patens and its ability to manufacture mammalian proteins could help to satisfy the large worldwide demand for therapeutic proteins. One well-known example is insulin, which enables diabetics to control their blood sugar level.

Nowadays, therapeutic proteins are mainly manufactured in mammalian cells, which are very expensive to culture. They need to be maintained at body temperature with a continuous supply of nutrients and oxygen, and the production process is costly. At present, global production capacity cannot match the demand. Because of the difficulties involved in handling them, production is possible only in industrialized countries.

In contrast, the moss Physcomitrella patens is comparatively undemanding. It needs water, a couple of nutrient salts and some light to allow it to flourish and produce proteins. This makes it convenient and simple to handle in a bioreactor, and, in the future, it might enable even less developed nations to satisfy their requirement for therapeutic proteins. However, further research will be needed before the moss can be used to produce therapeutic proteins on an industrial scale.


Story Source:

The above story is based on materials provided by ETH Zurich. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gitzinger et al. Functional cross-kingdom conservation of mammalian and moss (Physcomitrella patens) transcription, translation and secretion machineries. Plant Biotechnology Journal, 2009; 7 (1): 73 DOI: 10.1111/j.1467-7652.2008.00376.x

Cite This Page:

ETH Zurich. "Biotechnology: Engineered Moss Can Produce Human Proteins." ScienceDaily. ScienceDaily, 11 May 2009. <www.sciencedaily.com/releases/2009/05/090510200001.htm>.
ETH Zurich. (2009, May 11). Biotechnology: Engineered Moss Can Produce Human Proteins. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2009/05/090510200001.htm
ETH Zurich. "Biotechnology: Engineered Moss Can Produce Human Proteins." ScienceDaily. www.sciencedaily.com/releases/2009/05/090510200001.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins