Featured Research

from universities, journals, and other organizations

Variation Of Natural Compound Cures Malaria In Mice

Date:
May 20, 2009
Source:
Johns Hopkins Medical Institutions
Summary:
Approximately 350 million to 500 million cases of malaria are diagnosed each year mostly in sub-Saharan Africa. While medications to prevent and treat malaria do exist, the demand for new treatments is on the rise, in part, because malaria parasites have developed a resistance to existing medications. Now, researchers have discovered one way to stop malaria parasite growth, and this new finding could guide the development of new malaria treatments.

Approximately 350 million to 500 million cases of malaria are diagnosed each year mostly in sub-Saharan Africa. While medications to prevent and treat malaria do exist, the demand for new treatments is on the rise, in part, because malaria parasites have developed a resistance to existing medications. Now, researchers at the Johns Hopkins University School of Medicine have discovered one way to stop malaria parasite growth, and this new finding could guide the development of new malaria treatments.

"Our research on malaria is in line with Johns Hopkins' mission to address health problems on a global level," says Jun O. Liu, Ph.D., a professor of pharmacology and molecular sciences. "Our findings offer both a new potential molecular target for treating malaria and a compound that interacts at that target. These are important steps in discovering drugs that could help to treat malaria."

Liu's research team has for many years studied MetAP2 proteins, which are found in all organisms — from humans to single-celled bacteria — and essential for cell survival. They reasoned that if the malaria parasite has its own MetAP2, finding a chemical that disrupts MetAP2 function may lead to a new drug to stop parasite growth and malaria spread. So they searched a computer database of the sequence of the malaria parasite genome and found one protein very similar to human MetAP2, which they named PfMetAP2 for plasmodium falciparum, the parasite that causes malaria.

Recently other researchers reported that the natural antibiotic fumagillin can stop malaria parasites from growing, possibly by interfering with MetAP2. But the man-made version of fumagillin causes brain cells to die, so Liu's team made several compounds chemically related to fumagillin in hopes of finding one less toxic but still effective in interfering with PfMetAP2. They chose to further study one of these compounds, fumarranol, because it interacts with human MetAP2 and is less toxic to mice.

The team first tested whether fumarranol can stick to and interfere with PfMetAP2 by treating mouse cells containing PfMetAP2 with different amounts of fumarranol and fumagillin and comparing them to untreated cells. In treated cells, fumarranol stuck to PfMetAP2 and stopped it from working.

They next asked whether fumarranol could stop malaria parasites from growing in a culture dish. They treated both drug-resistant and multidrug-resistant strains of Plasmodium falciparum and found that fumarranol could stop the parasite from multiplying.

The team then gave mice infected with malaria fumarranol for four days after infection and measured the parasite load in the blood. They found that after four days, fumarranol worked as well as fumagillin to slow infection. After another 26 days they again measured parasites in the blood, found that some mice carried no observable level of parasites and considered these animals cured.

"The next step for establishing a new treatment for malaria would be to test whether fumarranol is the most optimal treatment or if new compounds that are similar to fumarranol might be even more specific to malaria parasites," Liu says.

This research was funded by a pilot grant from the Malaria Research Institute of Johns Hopkins Bloomberg School of Public Health and the Department of Pharmacology, Johns Hopkins School of Medicine and the Keck Foundation.

Authors on the paper are X. Chen, S. Xie, S. Bhat, T.A. Shapiro, and J.O. Liu of the Johns Hopkins University School of Medicine, and N. Kumar of the Johns Hopkins Bloomberg School of Public Health.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Journal Reference:

  1. Chen et al. Fumagillin and Fumarranol Interact with P. falciparum Methionine Aminopeptidase 2 and Inhibit Malaria Parasite Growth In Vitro and In Vivo. Chemistry & Biology, 2009; 16 (2): 193 DOI: 10.1016/j.chembiol.2009.01.006

Cite This Page:

Johns Hopkins Medical Institutions. "Variation Of Natural Compound Cures Malaria In Mice." ScienceDaily. ScienceDaily, 20 May 2009. <www.sciencedaily.com/releases/2009/05/090518134144.htm>.
Johns Hopkins Medical Institutions. (2009, May 20). Variation Of Natural Compound Cures Malaria In Mice. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2009/05/090518134144.htm
Johns Hopkins Medical Institutions. "Variation Of Natural Compound Cures Malaria In Mice." ScienceDaily. www.sciencedaily.com/releases/2009/05/090518134144.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins