Featured Research

from universities, journals, and other organizations

Discoveries Upend Traditional Thinking About How Plants Make Certain Compounds

Date:
May 29, 2009
Source:
Michigan State University
Summary:
Plant scientists have identified two new genes and two new enzymes in tomato plants. Those findings led them to discover that the plants were making monoterpenes, compounds that help give tomato leaves their distinctive smell, in a way that flies in the face of accepted thought.

Robert Last, professor, Department of Biochemistry and Molecular Biology, Michigan Agriculture Experimental Station.
Credit: Photo by G.L. Kohuth

Michigan State University plant scientists have identified two new genes and two new enzymes in tomato plants. Those findings led them to discover that the plants were making monoterpenes, compounds that help give tomato leaves their distinctive smell, in a way that flies in the face of accepted thought.

Such research could help researchers find new ways to protect plants from pests.

Based on years of research, scientists thought that plants always used a specific compound, geranyl diphosphate, to make monoterpenes. But MSU biochemistry and molecular biology scientists Anthony Schilmiller and Rob Last were part of a research team that has found that tomato plants use a different compound, neryl diphosphate, as the substrate for making monoterpenes. The difference is subtle, but the discovery will change the way terpene (compounds that are responsible for the taste and smell of many plants) research is done. The research is published in the May 25 issue of the Proceedings of the National Academy of Sciences.

"Essentially, this work subverts the dominant paradigm about an important and widespread pathway in plants," Last explained. "For years it was known that monoterpenes are made in a specific way. But there were cases where that pathway likely wasn't involved, given the kinds of compounds found in specific plants. We showed that in tomato trichomes (small hair cells located mainly on the plant's leaves and stems), the established pathway is wrong. In the tomato trichome, two enzymes work together to make the monoterpenes in a previously unsuspected way."

The two newly identified genes, neryl diphosphate synthase 1 (NDPS1) and phellandrene synthase 1 (PHS1), cause the tomato plant to make the new enzymes that produce the monoterpenes.

As the team was sequencing the DNA of tomato trichomes, Schilmiller and Eran Pichersky, of the University of Michigan, noticed that there were many sequences from genes that weren't supposed to be involved in monoterpene production. Because the sequences were found so frequently, they hypothesized the genes must be making high levels of compounds in the trichome.

"We had to think outside the box to figure out what the function of NDPS1 and PHS1 were," Schilmiller said. "Our colleagues at the University of Michigan, Eran Pichersky and Ines Schauvinhold, were instrumental in coming up with theories and running the assays."

Terpenes are the largest class of molecules made by plants – tens of thousands of different terpenes have been identified. Some of the known functions of terpenes include attracting pollinators, repelling pests and protecting the plant from diseases, as well as giving many plants their smell and taste. The aroma of many leaf spices, such as mint and basil, come from terpenes.

These new discoveries will allow other scientists to look for similar genes in other plants and perhaps discover new enzymes that make monoterpenes, which could lead to new ways to protect plants from pests.

Other co-authors from MSU are Amanda Charbonneau, biochemistry and molecular biology research assistant; and Matthew Larson and Curtis Wilkerson, of the bioinformatics core of the Research Technology Support Facility; from U-M are Adam Schmidt and Richard Xu.

This research is funded by the National Science Foundation. Last's research also is supported by the Michigan Agricultural Experiment Station.


Story Source:

The above story is based on materials provided by Michigan State University. Note: Materials may be edited for content and length.


Cite This Page:

Michigan State University. "Discoveries Upend Traditional Thinking About How Plants Make Certain Compounds." ScienceDaily. ScienceDaily, 29 May 2009. <www.sciencedaily.com/releases/2009/05/090526094249.htm>.
Michigan State University. (2009, May 29). Discoveries Upend Traditional Thinking About How Plants Make Certain Compounds. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2009/05/090526094249.htm
Michigan State University. "Discoveries Upend Traditional Thinking About How Plants Make Certain Compounds." ScienceDaily. www.sciencedaily.com/releases/2009/05/090526094249.htm (accessed April 20, 2014).

Share This



More Plants & Animals News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Newsy (Apr. 20, 2014) A 9-year-old Michigan boy was exploring a creek when he came across a 10,000-year-old tooth from a prehistoric mastodon. Video provided by Newsy
Powered by NewsLook.com
Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins