Featured Research

from universities, journals, and other organizations

Heme Proteins: Ubiquitous And Essential For Every Organism

Date:
June 12, 2009
Source:
University of Leicester
Summary:
Research in chemical biology shows how protein engineering techniques can be used to examine the function of heme enzymes.

Research at the chemistry-biology interface has been a major strength in Leicester for many years. Scientists at the Henry Wellcome Building for Biomedical Research have been bringing together equipment, staff and ideas in an attempt to establish a multidisciplinary approach to better study the structure, kinetics and function of biological systems.

On Wednesday 17th June, Dr Pipirou will present the key findings of her Ph.D. research in which she studied the function and mechanism of formation of covalent links inside heme proteins. Carried out in Professor Emma Raven’s lab, Dr Pipirou’s research involved using techniques at the interface between the traditional chemistry and biology disciplines to engineer covalent links, physiologically seen in mammalian proteins, into members of their plant counterparts.

Dr Pipirou’s doctoral research has given valuable insight into the similarities and differences between plant and mammalian heme proteins and has shown that plant proteins can be used as model systems to study the characteristics and function of complex mammalian systems. Dr Pipirou was recently presented with the Royal Society of Chemistry’s 2008 Laurie Vergnano Award, in recognition of her research in this field.

Dr Pipirou commented: ‘Heme, is an iron-containing molecule that is an integral component of many proteins, so-called hemoproteins, in bacteria, plants and animals. It is the component of hemoglobin that gives blood its red color. Heme proteins display a wide range of biological functions; for example, hemoglobin and myoglobin are able to maintain a balanced supply of oxygen by functioning as oxygen transport and binding proteins.’

‘Although the heme is non-covalently bound to many of these proteins, it is now becoming clear that a large number of other proteins use modified versions of heme in which the heme is covalently linked to the protein. The most striking example of such a protein is myeloperoxidase, a member of the mammalian peroxidases, which bears three heme-protein covalent bonds. My Phd work was based on examining how these links are made across different families of heme proteins.’

She said: ‘I will present the type of heme-protein links that we can engineer into plant peroxidases and demonstrate how plant proteins can use the same chemistry and mechanisms that we see for mammalian enzymes. Most importantly, I will discuss what nature has to gain by supporting formation of such heme-protein links or even by “switching them off”.’

Dr Pipirou was recently presented with the Royal Society of Chemistry’s 2008 Laurie Vergnano Award, in recognition of her research in this field.


Story Source:

The above story is based on materials provided by University of Leicester. Note: Materials may be edited for content and length.


Cite This Page:

University of Leicester. "Heme Proteins: Ubiquitous And Essential For Every Organism." ScienceDaily. ScienceDaily, 12 June 2009. <www.sciencedaily.com/releases/2009/06/090612123914.htm>.
University of Leicester. (2009, June 12). Heme Proteins: Ubiquitous And Essential For Every Organism. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2009/06/090612123914.htm
University of Leicester. "Heme Proteins: Ubiquitous And Essential For Every Organism." ScienceDaily. www.sciencedaily.com/releases/2009/06/090612123914.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins