Featured Research

from universities, journals, and other organizations

Genome-wide Map Shows Precisely Where MicroRNAs Do Their Work

Date:
July 6, 2009
Source:
Rockefeller University
Summary:
MicroRNAs are the newest kid on the genetic block. By regulating the unzipping of genetic information, these tiny molecules have set the scientific world alight with such wide-ranging applications as onions that can't make you cry and therapeutic potential for new treatments for viral infections, cancer and degenerative diseases. But the question remains: How do they work?

Three's a crowd. By using a technique that molecularly cements the protein Argonaute (gray) to messenger RNA (blue), scientists have mapped the precise location of microRNAs (red) across the mouse genome. Understanding where microRNAs bind could help scientists devise ways of turning off problematic genes such as those linked to cancer.
Credit: Image courtesy of Rockefeller University

MicroRNAs are the newest kid on the genetic block. By regulating the unzipping of genetic information, these tiny molecules have set the scientific world alight with such wide-ranging applications as onions that can’t make you cry and therapeutic potential for new treatments for viral infections, cancer and degenerative diseases. But the question remains: How do they work?

Related Articles


In research to appear in the June 17 advance online issue of Nature, Robert B. Darnell, head of the Laboratory of Molecular Neuro-oncology, and his team at Rockefeller University provide a long-awaited key clue to answering that question. By using a technique that molecularly cements proteins to RNAs, the team has decoded a map of microRNA-messenger RNA interactions in the brain, an advance that holds promise for biology and human disease, for example by silencing trouble-making genes linked to disease.

MicroRNAs rewrote the rules of gene expression in 2001 when they were found to bind to messenger RNA and shut down protein production, a process called RNA interference. By 2006, when the Nobel Prize in medicine was given for the discovery of RNA interference, scientists around the globe had even narrowed down microRNAs’ primary site of action to somewhere around the end of the RNA transcript. What scientists couldn’t nail down was the exact string of nucleotides to which the microRNAs bind along a messenger RNA transcript.

“To understand exactly how microRNAs work, you want to know their precise targets,” says Darnell, who is a Howard Hughes Medical Institute investigator

and Robert and Harriet Heilbrunn Professor at Rockefeller. “You want a map that tells you which messenger RNAs each microRNA targets and exactly where they are binding.”

The problem was that on any given messenger RNA, there are many sites to which a single microRNA can theoretically bind, and there are hundreds of microRNAs in every cell. Prior techniques — primarily relying on computer predictions — weren’t very good at sorting through the morass of predictions to identify the real sites, explains Darnell. The trick to getting such a map was to freeze a snapshot of microRNAs directly bound to messenger RNA in living cells. Working specifically in mouse brain tissue, that’s what Darnell and his team did using a technique the lab developed called high throughput sequence-crosslinking immunoprecipitation, or HITS-CLIP.

In order to shut down a gene before it is translated, microRNAs must be guided to their target messenger RNAs via a protein called Argonaute. The Argonaute-microRNA-messenger RNA complex now forms a sandwich structure where the microRNA is compressed in the middle. By using their technique to fuse Argonaute to these two RNAs, the team was then able to identify the bound microRNA and its precise target sites across all messenger RNAs expressed in the mouse brain.

The researchers, including first author Sung-Wook Chi, a graduate fellow in the Tri-Institutional Computational Biology Program, Julie Zang, a biomedical fellow, and Aldo Mele, a research assistant, found that on average, about two microRNAs bind to each messenger RNA. They also found that microRNAs bind to nucleotides not only at the terminal end of a messenger RNA, but also at other regions including sequences coding for proteins and sequences once thought to be “junk RNA,” providing new insights into microRNA biology.

“It is thought that RNA is the molecule that can explain the gap between the complexity of cellular functions and our limited number of genes,” says Darnell. “We now have a platform to evaluate the degree to which microRNAs contribute to this complexity with an extraordinary amount of precision.”


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Chi et al. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature, June 18, 2009; DOI: 10.1038/nature08170

Cite This Page:

Rockefeller University. "Genome-wide Map Shows Precisely Where MicroRNAs Do Their Work." ScienceDaily. ScienceDaily, 6 July 2009. <www.sciencedaily.com/releases/2009/06/090618190622.htm>.
Rockefeller University. (2009, July 6). Genome-wide Map Shows Precisely Where MicroRNAs Do Their Work. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/2009/06/090618190622.htm
Rockefeller University. "Genome-wide Map Shows Precisely Where MicroRNAs Do Their Work." ScienceDaily. www.sciencedaily.com/releases/2009/06/090618190622.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Lions Make Surprise Comeback in Gabon

Lions Make Surprise Comeback in Gabon

AFP (Mar. 30, 2015) Lions have made a comeback in southeast Gabon, after disappearing for years, according to live footage from US wildlife organisation Panthera. Duration: 00:32 Video provided by AFP
Powered by NewsLook.com
New Arthropod Fossil Might Be Relative Of Spiders, Scorpions

New Arthropod Fossil Might Be Relative Of Spiders, Scorpions

Newsy (Mar. 29, 2015) A 508-million-year-old arthropod that swam in the Cambrian seas is thought to share a common ancestor with spiders and scorpions. Video provided by Newsy
Powered by NewsLook.com
Vietnam Rice Boom Piles Pressure on Farmers and the Environment

Vietnam Rice Boom Piles Pressure on Farmers and the Environment

AFP (Mar. 29, 2015) Vietnam&apos;s drive to become the world&apos;s leading rice exporter is pushing farmers in the fertile Mekong Delta to the brink, say experts, with mounting costs to the environment. Duration: 02:35 Video provided by AFP
Powered by NewsLook.com
Raw: Lioness Has Rare Five-Cub Litter

Raw: Lioness Has Rare Five-Cub Litter

AP (Mar. 27, 2015) A lioness in Pakistan has given birth to five cubs, twice the usual size of a litter. Queen gave birth to two other cubs just nine months ago. (March 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins