Featured Research

from universities, journals, and other organizations

Feather Fibers Fluff Up Hydrogen Storage Capacity

Date:
June 24, 2009
Source:
American Chemical Society
Summary:
Scientists in Delaware say they have developed a new hydrogen storage method -- carbonized chicken feather fibers -- that can hold vast amounts of hydrogen, a promising but difficult to corral fuel source, and do it at a far lower cost than other hydrogen storage systems under consideration.

Scientists in Delaware say they have developed a new hydrogen storage method — carbonized chicken feather fibers — that can hold vast amounts of hydrogen, a promising but difficult to corral fuel source, and do it at a far lower cost than other hydrogen storage systems under consideration.

Related Articles


The research, presented at the 13th Annual Green Chemistry & Engineering Conference, could eventually help overcome some of the hurdles to using hydrogen fuel in cars, trucks and other machinery.

"Carbonized chicken feather fibers have the potential to dramatically improve upon existing methods of hydrogen storage and perhaps pave the way for the practical development of a truly hydrogen-based energy economy," says Richard P. Wool, Ph.D., professor of chemical engineering and director of the Affordable Composites from Renewable Resources program at the University of Delaware in Newark.

The research was presented by Erman Senoz, a graduate student in the Department of Chemical Engineering at the University of Delaware in Newark.

Chicken feather fibers are mostly composed of keratin, a natural protein that forms strong, hollow tubes. When heated, this protein creates crosslinks, which strengthen its structure, and becomes more porous, increasing its surface area. The net result is carbonized chicken feather fibers, which can absorb as much or perhaps more hydrogen than carbon nanotubes or metal hydrides, two other materials being studied for their hydrogen storage potential, Wool says. Plus, they're cheap.

Using carbonized chicken feathers would only add about $200 to the price of a car, according to Wool. By comparison, making a 20-gallon hydrogen fuel tank that uses carbon nanotubes could cost $5.5 million; one that uses metal hydrides could cost up to $30,000, Wool says.

Hydrogen, the most common element in the universe, has long been touted as a clean and abundant energy alternative to fossil fuels. But its physical characteristics make it very difficult to store and transport — as a pressurized gas it takes up about 40 times as much space as gasoline; as a liquid it needs to be kept at extremely low temperatures.

Wool estimates that it would take a 75-gallon tank to go 300 miles in a car using carbonized chicken feather fibers to store hydrogen. He says his team is working to improve that range.

"The problem with hydrogen as a gas or liquid is its density is too low," Wool says. "Using currently available technology, if you had a 20-gallon tank and filled it with hydrogen at typical room temperature and pressure, you could drive about a mile. When we started we didn't know how well carbonized chicken feathers would work for hydrogen storage, but we certainly suspected we could do a lot better than that."

In addition to hydrogen storage, Wool and his colleagues are working on ways to transform chicken feather fibers into a number of other products including hurricane-resistant roofing, lightweight car parts and bio-based computer circuit boards.

The conference is organized by the ACS Green Chemistry Instituteฎ, a nonprofit organization devoted to promoting and advancing the discovery and design of chemical products and processes that eliminate the generation and use of hazardous substances in all aspects of the global chemical enterprise.

This research, "Hydrogen Storage On Carbonized Chicken Feather Fibers," (paper #14), will be presented on June 23 at the University of Maryland University College, during the symposium, 'Technologies for a Hydrogen Economy."


Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Chemical Society. "Feather Fibers Fluff Up Hydrogen Storage Capacity." ScienceDaily. ScienceDaily, 24 June 2009. <www.sciencedaily.com/releases/2009/06/090623120833.htm>.
American Chemical Society. (2009, June 24). Feather Fibers Fluff Up Hydrogen Storage Capacity. ScienceDaily. Retrieved March 27, 2015 from www.sciencedaily.com/releases/2009/06/090623120833.htm
American Chemical Society. "Feather Fibers Fluff Up Hydrogen Storage Capacity." ScienceDaily. www.sciencedaily.com/releases/2009/06/090623120833.htm (accessed March 27, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, March 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Amazon Complains U.S. Is Too Slow To Regulate Drones

Amazon Complains U.S. Is Too Slow To Regulate Drones

Newsy (Mar. 25, 2015) — Days after getting approval to test certain commercial drones, Amazon says the Federal Aviation Administration is dragging its feet on the matter. Video provided by Newsy
Powered by NewsLook.com
Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Reuters - Innovations Video Online (Mar. 25, 2015) — European researchers say our smartphone use offers scientists an ideal testing ground for human brain plasticity. Dr Ako Ghosh&apos;s team discovered that the brains and thumbs of smartphone users interact differently from those who use old-fashioned handsets. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
China Wants to Export Its Steel Problem

China Wants to Export Its Steel Problem

Reuters - Business Video Online (Mar. 25, 2015) — China is facing a crisis with a glut of steel and growing public anger over the pollution created by production. In a move to solve the problem, some steel mills are looking to relocate overseas. Jane Lanhee Lee reports. Video provided by Reuters
Powered by NewsLook.com
Robot Stays on Its Feet Despite Punishment

Robot Stays on Its Feet Despite Punishment

Reuters - Innovations Video Online (Mar. 24, 2015) — Robotic engineers have modelled a two-legged robot to be fast and agile like an ostrich. The design is more efficient and stable than bipedal robots built to move like humans, according to its creators who abuse the poor machine to test its skills. Ben Gruber has more. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins