Featured Research

from universities, journals, and other organizations

By Manipulating Oxygen, Scientists Coax Bacteria Into Never-Before-Seen Solitary Wave

Date:
July 17, 2009
Source:
Rockefeller University
Summary:
Bacteria know that they are too small to make an impact individually. So they wait, they multiply, and then they engage in behaviors that are only successful when all cells participate in unison. There are hundreds of behaviors that bacteria carry out in such communities. Now researchers have discovered one that has never been observed or described before in a living system.

Ring leader. A photograph of Libchaber's experiment shows a ring of motionless E. coli bacteria (green) forming a wave.
Credit: Image courtesy of Rockefeller University

Bacteria know that they are too small to make an impact individually. So they wait, they multiply, and then they engage in behaviors that are only successful when all cells participate in unison. There are hundreds of behaviors that bacteria carry out in such communities. Now researchers at Rockefeller University have discovered one that has never been observed or described before in a living system.

In research published in the May 12 issue of Physical Review Letters, Albert J. Libchaber, head of the Laboratory of Experimental Condensed Matter Physics, and his colleagues, including first author Carine Douarche, a postdoctoral associate in the lab, show that when oxygen penetrates a sample of oxygen-deprived Escherichia coli bacteria, they do something that no living community had been seen to do before: The bacteria accumulate and form a solitary propagating wave that moves with constant velocity and without changing shape. But while the front is moving, each bacterium in it isn’t moving at all.

“It’s like a soliton,” says Douarche. “A self-reinforcing solitary wave.”

Unlike the undulating pattern of an ocean wave, which flattens or topples over as it approaches the shore, a soliton is a solitary, self-sustaining wave that behaves like a particle. For example, when two solitons collide, they merge into one and then separate into two with the same shape and velocity as before the collision. The first soliton was observed in 1834 at a canal in Scotland by John Scott Russell, a scientist who was so fascinated with what he saw that he followed it on horseback for miles and then set up a 30-foot water tank in his yard where he successfully simulated it, sparking considerable controversy.

The work began when Libchaber, Douarche and their colleagues placed E. coli bacteria in a sealed square chamber and measured the oxygen concentration and the density of bacteria every two hours until the bacteria consumed all the oxygen. (Bacteria, unlike humans, don’t die when starved for oxygen, but switch to a nonmotile state from which they can be revived.) The researchers then cracked the seals of the chamber, allowing oxygen to flow in.

The result: The motionless bacteria, which had spread out uniformly, began to move; first those around the perimeter, nearest to the seals, and then those further away. A few hours later, the bacteria began to spatially segregate into two domains of moving and nonmoving bacteria and pile up into a ring at the border of low-oxygen and no-oxygen. There they formed a solitary wave that propagated slowly but steadily toward the center of the chamber without changing its shape.

The effect, which lasted for more than 15 hours and covered a considerable distance (for bacteria), could not be explained by the expression of new proteins or by the addition of energy in the system. Instead, the creation of the front depends on the dispersion of the active bacteria and on the time it takes for oxygen-starved bacteria to completely stop moving, 15 minutes. The former allows the bacteria to propagate at a constant velocity, while the latter keeps the front from changing shape.

However, a propagating front of bacteria wasn’t all that was created. “To me, the biggest surprise was that the bacteria control the flow of oxygen in the regime,” says Libchaber. “There’s a propagating front of bacteria, but there is a propagating front of oxygen, too. And the bacteria, by absorbing the oxygen, control it very precisely.”

Oxygen, Libchaber explains, is one of the fastest-diffusing molecules, moving from regions of high concentration to low concentration such that the greater the distance it needs to travel, the faster it will diffuse there. But that is not what they observed. Rather, oxygen penetrated the chamber very slowly in a linear manner. Equal time, equal distance. “This pattern is not due to biology,” says Libchaber. “It has to do with the laws of physics. And it is organized in such an elegant way that the only thing it tells us is that we have a lot to learn from bacteria.”


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Douarche et al. E. Coli and Oxygen: A Motility Transition. Physical Review Letters, 2009; 102 (19): 198101 DOI: 10.1103/PhysRevLett.102.198101

Cite This Page:

Rockefeller University. "By Manipulating Oxygen, Scientists Coax Bacteria Into Never-Before-Seen Solitary Wave." ScienceDaily. ScienceDaily, 17 July 2009. <www.sciencedaily.com/releases/2009/07/090716134903.htm>.
Rockefeller University. (2009, July 17). By Manipulating Oxygen, Scientists Coax Bacteria Into Never-Before-Seen Solitary Wave. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2009/07/090716134903.htm
Rockefeller University. "By Manipulating Oxygen, Scientists Coax Bacteria Into Never-Before-Seen Solitary Wave." ScienceDaily. www.sciencedaily.com/releases/2009/07/090716134903.htm (accessed July 26, 2014).

Share This




More Plants & Animals News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How to Make Single Serving Smoothies: Howdini Hacks

How to Make Single Serving Smoothies: Howdini Hacks

Howdini (July 24, 2014) Smoothies are a great way to get in lots of healthy ingredients, plus they taste great! Howdini has a trick for making the perfect single-size smoothie that will save you time on cleanup too! All you need is a blender and a mason jar. Video provided by Howdini
Powered by NewsLook.com
Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Newsy (July 24, 2014) A new study claims a set of prehistoric T-Rex footprints supports the theory that the giant predators hunted in packs instead of alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins