Featured Research

from universities, journals, and other organizations

Intrinsic Changes In Protein Shape Influence Drug Binding

Date:
August 24, 2009
Source:
University of Pittsburgh Schools of the Health Sciences
Summary:
Computational biologists have shown that proteins have an intrinsic ability to change shape, and this is required for their biological activity. Shape-changing also allows the small molecules that are attracted to a given protein to select the structure that permits the best binding. That premise could help in the discovery and design of drugs that will have the most impact on protein function to better treat disease.

Computational biologists at the University of Pittsburgh School of Medicine have shown that proteins have an intrinsic ability to change shape, and this is required for their biological activity. This shape-changing also allows the small molecules that are attracted to a given protein to select the structure that permits the best binding. That premise could help in drug discovery and in designing compounds that will have the most impact on protein function to better treat a host of diseases.

The findings were published this week in the online version of the Proceedings of the National Academy of Sciences.

According to the classical view, known as "induced fit," drug binding causes a change in the target protein structure, explained senior author Ivet Bahar, Ph.D., professor and John K. Vries Chair of the Department of Computational Biology, Pitt School of Medicine. But it now appears that a protein has many different conformations that are already available even without the presence of a binding molecule, which is called the ligand. The ligand attaches to the protein shape that allows it to fit well, and that close interaction can lead to effective inhibition of protein function.

Gathering information about the array of conformations a target protein might exhibit can be of great use when designing new drugs, Dr. Bahar said. That allows the scientist to better identify the structural pocket into which the drug must fit to cause significant alterations in protein function, such as the inhibition of an enzyme reaction.

For the study, Dr. Bahar and her doctoral student, Ahmet Bakan, focused on three common drug targets, namely enzymes important in HIV, inflammatory response and the cell division cycle. Using the sets of conformations of protein-ligand complexes stored in the Protein Data Bank, an information repository for the scientific community at Rutgers University, the researchers figured out what structures the enzymes had both alone and when bound to a variety of small molecules.

"It seems there are simple but robust rules that control ligand binding," Dr. Bahar explained. "If we know the rules, we can make better predictions about which binding sites to target to make more effective drugs."

Dr. Bahar's research is funded by the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of Pittsburgh Schools of the Health Sciences. Note: Materials may be edited for content and length.


Cite This Page:

University of Pittsburgh Schools of the Health Sciences. "Intrinsic Changes In Protein Shape Influence Drug Binding." ScienceDaily. ScienceDaily, 24 August 2009. <www.sciencedaily.com/releases/2009/08/090819135438.htm>.
University of Pittsburgh Schools of the Health Sciences. (2009, August 24). Intrinsic Changes In Protein Shape Influence Drug Binding. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2009/08/090819135438.htm
University of Pittsburgh Schools of the Health Sciences. "Intrinsic Changes In Protein Shape Influence Drug Binding." ScienceDaily. www.sciencedaily.com/releases/2009/08/090819135438.htm (accessed July 23, 2014).

Share This




More Plants & Animals News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
San Diego Zoo Welcomes New, Rare Rhino Calf

San Diego Zoo Welcomes New, Rare Rhino Calf

Reuters - US Online Video (July 21, 2014) An endangered black rhino baby is the newest resident at the San Diego Zoo. Sasha Salama reports. Video provided by Reuters
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins