Featured Research

from universities, journals, and other organizations

New Biosensor Can Detect Bacteria Instantaneously

Date:
September 8, 2009
Source:
Plataforma SINC
Summary:
Researchers in Spain have developed a biosensor that can immediately detect very low levels of Salmonella typhi, the bacteria that causes typhoid fever. The technique uses carbon nanotubes and synthetic DNA fragments that activate an electric signal when they link up with the pathogen.

Within the carbon nanotube system, the aptamers (red) bind to the bacteria (green), which activate a measurable electrical signal that reveals the presence of the pathogen.
Credit: Chemometrics Research Group, and Nanosensors Qualimetrics the URV

A research group from the Rovira i Virgili University (URV) in Tarragona has developed a biosensor that can immediately detect very low levels of Salmonella typhi, the bacteria that causes typhoid fever. The technique uses carbon nanotubes and synthetic DNA fragments that activate an electric signal when they link up with the pathogen.

Related Articles


"We have developed a new biosensor that can detect extremely low concentrations of bacteria immediately, easily and reliably," says F. Xavier Rius, lead author of the study and a professor in the Chemometrics, Qualimetrics and Nanosensors research group in the Analytical Chemistry and Organic Chemistry Department of the URV.

Rius' team, jointly led by Jordi Riu, has come up with a technique that can detect extremely low levels of the bacteria Salmonella typhi, which causes typhoid fever. This new biosensor functions using a method, described this month in the scientific journal Angewandte Chemie International Edition, which involves carbon nanotubes with inbuilt aptamers providing electrochemical readings.

The aptamers are small fragments of artificial DNA or RNA designed to attach themselves specifically to a particular molecule, cell or micro organism, in this case Salmonella. If the bacteria are not present, the aptamers remain on the walls of the carbon nanotubes. However, if they detect bacteria, they become activated and stick to it, and the carbon nanotubes generate an electric signal that is picked up by a simple potentiometer connected to the biosensor.

"The presence of the bacteria sparks a change in the interaction between the aptamers and the nanotubes, which takes place in a few seconds and creates an increase in the voltage of the electrode," says Rius.

Traditional methods for identifying and measuring micro organisms require one or two days' analysis. "This technique means small quantities of micro organisms can be detected simply and practically in real time, just the same as measuring the pH of water," adds the researcher.

This study is part of the international research being carried out to find the most effective and fast ways of detecting all kinds of pathogens. The new biosensor makes it possible to identify a single cell of Salmonella in a five-millilitre sample and can successfully make quantitative measurements of up to 1,000 bacteria per millilitre.


Story Source:

The above story is based on materials provided by Plataforma SINC. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gustavo A. Zelada-Guillén, Jordi Riu, Ali Düzgün, F. Xavier Rius. Immediate Detection of Living Bacteria at Ultralow Concentrations Using a Carbon Nanotube Based Potentiometric Aptasensor. Angewandte Chemie, 2009; NA DOI: 10.1002/ange.200902090

Cite This Page:

Plataforma SINC. "New Biosensor Can Detect Bacteria Instantaneously." ScienceDaily. ScienceDaily, 8 September 2009. <www.sciencedaily.com/releases/2009/09/090908084941.htm>.
Plataforma SINC. (2009, September 8). New Biosensor Can Detect Bacteria Instantaneously. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2009/09/090908084941.htm
Plataforma SINC. "New Biosensor Can Detect Bacteria Instantaneously." ScienceDaily. www.sciencedaily.com/releases/2009/09/090908084941.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) — As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) — Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) — Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins