Featured Research

from universities, journals, and other organizations

Engineers Track Bacteria's Kayak Paddle-like Motion For First Time

Date:
September 26, 2009
Source:
Yale University
Summary:
Engineers have for the first time observed and tracked E. coli bacteria moving in a liquid medium with a motion similar to that of a kayak paddle. The findings will help lead to a better understanding of how bacteria move from place to place and, potentially, how to keep them from spreading.

The team took sequential images of the E. coli bacteria to track their movements, which resemble the motion of a kayak paddle, through a liquid medium.
Credit: Hur Koser/Yale University

Yale engineers have for the first time observed and tracked E. coli bacteria moving in a liquid medium with a motion similar to that of a kayak paddle.

Related Articles


Their findings, which appear online September 29 in the journal Physical Review Letters, will help lead to a better understanding of how bacteria move from place to place and, potentially, how to keep them from spreading.

Scientists have long theorized that the cigar-shaped cell bodies of E. coli and other microorganisms would follow periodic orbits that resemble the motion of a kayak paddle as they drift downstream in a current. Until now, no one had managed to directly observe or track those movements.

Hur Koser, associate professor at Yale's School of Engineering & Applied Science, previously discovered that hydrodynamic interactions between the bacteria and the current align the bacteria in a way that allows them to swim upstream. "They find the most efficient route to migrate upstream, and we ultimately want to understand the mechanism that allows them to do that," Koser said.

In the new study, Koser, along with postdoctoral associate and lead author of the paper, Tolga Kaya, devised a method to see this motion in progress. They used advanced computer and imaging technology, along with sophisticated new algorithms, that allowed them to take millions of high-resolution images of tens of thousands of individual, non-flagellated E. coli drifting in a water and glycerin solution, which amplified the bacteria's paddle-like movements.

The team characterized the bacteria's motion as a function of both their length and distance from the surface. The team found that the longer and closer to the surface they were, the slower the E. coli "paddled."

It took the engineers months to perfect the intricate camera and computer system that allowed them to take 60 to 100 sequential images per second, then automatically and efficiently analyze the huge amount of resulting data.

E. coli and other bacteria can colonize wherever there is water and sufficient nutrients, including the human digestive tract. They encounter currents in many settings, from riverbeds to home plumbing to irrigation systems for large-scale agriculture.

"Understanding the physics of bacterial movement could potentially lead to breakthroughs in the prevention of bacterial migration and sickness," Koser said. "This might be possible through mechanical means that make it more difficult for bacteria to swim upstream and contaminate water supplies, without resorting to antibiotics or other chemicals."


Story Source:

The above story is based on materials provided by Yale University. Note: Materials may be edited for content and length.


Cite This Page:

Yale University. "Engineers Track Bacteria's Kayak Paddle-like Motion For First Time." ScienceDaily. ScienceDaily, 26 September 2009. <www.sciencedaily.com/releases/2009/09/090925115455.htm>.
Yale University. (2009, September 26). Engineers Track Bacteria's Kayak Paddle-like Motion For First Time. ScienceDaily. Retrieved April 17, 2015 from www.sciencedaily.com/releases/2009/09/090925115455.htm
Yale University. "Engineers Track Bacteria's Kayak Paddle-like Motion For First Time." ScienceDaily. www.sciencedaily.com/releases/2009/09/090925115455.htm (accessed April 17, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, April 17, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Un-Bee-Lievable: Bees on the Loose After Washington Truck Crash

Un-Bee-Lievable: Bees on the Loose After Washington Truck Crash

Reuters - US Online Video (Apr. 17, 2015) A truck carrying honey bees overturns near Lynnwood, Washington, spreading boxes of live bees across the highway. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Our Love Of Puppy Dog Eyes Explained By Science

Our Love Of Puppy Dog Eyes Explained By Science

Newsy (Apr. 17, 2015) Researchers found a spike in oxytocin occurs in both humans and dogs when they gaze into each other&apos;s eyes. Video provided by Newsy
Powered by NewsLook.com
Dog Flu Spreading in Midwestern States

Dog Flu Spreading in Midwestern States

AP (Apr. 17, 2015) Dog flu is spreading in several Midwestern states. Dog daycare centers and veterinary offices are taking precautions. (April 17) Video provided by AP
Powered by NewsLook.com
Raw: Rare Whale Spotted in Gulf of Mexico

Raw: Rare Whale Spotted in Gulf of Mexico

AP (Apr. 17, 2015) Researchers from the E/V Nautilus had quite a surprise Tuesday, when a curious sperm whale swam around their remotely operated vehicle in the Gulf of Mexico. Cameras captured the encounter. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins