Featured Research

from universities, journals, and other organizations

First Direct Information About Prion's Molecular Structure Reported

Date:
October 6, 2009
Source:
Vanderbilt University
Summary:
Scientists have discovered the first direct information about the molecular structure of prions. In addition, the study has revealed surprisingly large structural differences between natural prions and the closest synthetic analogs that scientists have created in the lab.

Electron microscope images of natural prions from mouse brain (A) and synthetic mouse prions (B) at a magnification of approximately 100,000 times. At this scale the only visible difference between the two is the width of the filaments: the synthetic material shows a wider distribution of widths than the natural material. The black scale bar is 100 nanometers long.
Credit: Holger Wille, UC San Francisco

A collaboration between scientists at Vanderbilt University and the University of California, San Francisco has led to the first direct information about the molecular structure of prions. In addition, the study has revealed surprisingly large structural differences between natural prions and the closest synthetic analogs that scientists have created in the lab.

Prions are the infectious proteins responsible for human Creutzfeldt-Jakob disease, bovine spongiform encephalopathy, or “mad cow” disease, scrapie in sheep and several other related nervous system disorders in mammals. For a number of years, scientists have been using the tools of genetic engineering to create synthetic versions of these particles so they could study them more easily. Although researchers have made particles that appear identical to natural prions, they have had trouble duplicating their infectious behavior.

“We expected to find subtle differences, but we found major differences instead,” says Gerald Stubbs, professor of biological sciences at Vanderbilt University. “Although we cannot say for certain that the differences we’ve seen can explain why natural prions are so infectious, there is a good chance that they are closely related.”

The study, which was recently published online in the Proceedings of the National Academy of Sciences, was a joint effort by the Stubbs laboratory and that of Stanley Prusiner at the University of California, San Francisco, who received the Nobel prize for the discovery of prions.

“Our results will aid in attempts to create the infectious synthetic prions that are needed to figure out how prions work and ultimately to find cures for the diseases that they cause,” says the lead author of the study, Holger Wille, assistant adjunct professor of neurology in the Institute for Neurodegenerative Diseases, which is based at UCSF and directed by Prusiner.

Prusiner’s group was the first one that succeeded in making infectious prions in the test tube. However, they are not nearly as infectious as the real thing. Six years ago, Prusiner contacted Stubbs, who is a world authority on determining the molecular structures of fibrous materials, and asked if he was interested in collaborating on an effort to characterize the detailed structure of prions. It didn’t take much convincing. “I’ve always been interested in prions, so I readily agreed,” says Stubbs.

Prions, because of their association with mad cow disease, are the most notorious of the amyloids, which are insoluble clumps of fibrous protein that play a role in a number of neurodegenerative diseases, including Alzheimer’s, Parkinson’s and Lou Gehrig disease, as well as some other common illnesses, including type II diabetes. “It is particularly difficult to determine the molecular structure of fibrous materials like these because they have an intrinsically high level of disorder,” Stubbs explains.

When viewed with an electron microscope, which can magnify images up to one million times, the natural and synthetic prions look nearly identical. They both clump together to form microscopic filaments. At a magnification of approximately one hundred thousand times, the only visible difference is the width of the filaments: the synthetic material shows a wider distribution of widths than the natural material.

The Stubbs lab used unconventional X-ray diffraction methods to get the first details of the molecular structures of natural prions and Prusiner’s synthetic prions. The researchers found that the synthetic prions were shaped something like a ladder. Based on electron microscopic images, the Prusiner lab had proposed that the natural prions have a more complex, three-sided cylindrical shape, and the X-ray experiments supported this proposal.

“The natural, infectious prions are folded into a much more complicated shape,” says Stubbs. Proteins are molecules that are folded into shapes that determine their biological properties. Prions and the other amyloids are cases in which proteins are misfolded into shapes that interfere with normal biological processes. “Normally, the cellular systems deal with misfolded proteins but, for some reason, these slip through the cracks,” he says.

Prions don’t have any DNA in their make-up so they don’t reproduce in a normal fashion. Instead, they spread by transforming proteins they come into contact with into prions by causing them to misfold.

“Our data on prion structure is an important step toward understanding prion infection,” says Stubbs, “and understanding the process is essential before people can design drugs that restrict or prevent it.”

The research was supported by grants from the National Institutes of Health, Fairchild Foundation, G. Harold and Leila Y. Mathers Foundation, the National Science Foundation and the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by Vanderbilt University. Note: Materials may be edited for content and length.


Cite This Page:

Vanderbilt University. "First Direct Information About Prion's Molecular Structure Reported." ScienceDaily. ScienceDaily, 6 October 2009. <www.sciencedaily.com/releases/2009/10/091005161324.htm>.
Vanderbilt University. (2009, October 6). First Direct Information About Prion's Molecular Structure Reported. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2009/10/091005161324.htm
Vanderbilt University. "First Direct Information About Prion's Molecular Structure Reported." ScienceDaily. www.sciencedaily.com/releases/2009/10/091005161324.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins