Featured Research

from universities, journals, and other organizations

Bacteria 'invest' wisely to survive uncertain times, scientists report

Date:
December 1, 2009
Source:
UT Southwestern Medical Center
Summary:
Like savvy Wall Street money managers, bacteria hedge their bets to increase their chances of survival in uncertain times, strategically investing their biological resources to weather unpredictable environments. In a new study, researchers describe how bacteria play the market so well.

Drs. Grol Sel (left), Tolga Cagatay.
Credit: Image courtesy of UT Southwestern Medical Center

Like savvy Wall Street money managers, bacteria hedge their bets to increase their chances of survival in uncertain times, strategically investing their biological resources to weather unpredictable environments.

In a new study available online and featured on the cover of Cell, UT Southwestern Medical Center researchers describe how bacteria play the market so well. Inside each bacterial cell are so-called genetic circuits that provide specific survival skills. Within the bacteria population, these genetic circuits generate so much diversity that the population as a whole is more tolerant of -- and is more likely to survive -- a wide range of variability in the environment.

"We have found that a particular genetic circuit is responsible for generating diversity within the bacteria population," said senior author Dr. Grol Sel, assistant professor of pharmacology and in the Cecil H. and Ida Green Comprehensive Center for Molecular, Computational and Systems Biology at UT Southwestern.

This diversity, like a diversified investment portfolio, means that each bacterium has characteristics that allow it to survive under certain conditions, said Dr. Sel. "When conditions are highly variable, some individual bacteria are equipped to thrive in the highs or lows, while others tank," he said. "It's like the stock market. If you invest all your money in just one stock, and conditions change to lessen or completely eliminate its value, you won't survive financially. Similarly, in the case of these bacteria, if all the cells were adapted to only a small, rigid set of environmental factors, the population would be wiped out if conditions unexpectedly changed.

"There seems to be an optimization going on in these organisms," he added.

By generating diversity, genetic circuits ensure enough cells will survive to carry over the population, especially in times of variable conditions, Dr. Sel explained. Essentially, variability of bacterial cells appears to match the variability in the environment, thereby increasing the chances of bacterial survival, he said.

Genetic circuits are distinct sets of genes and proteins within cells that interact in a specific pattern, resulting in some biological process. In this study, the researchers focused on a genetic circuit within a bacterium that controls the transformation of bacteria cells in and out of a state called competence. Differences in the duration of the competence state have particular survival advantages, depending on the environmental conditions.

Biological "noise" in the genetic circuit, which comes from random fluctuations in the chemical reactions involved in the pattern of interactions, is similar to the undesirable noise -- like static heard on AM radio -- found in electrical circuits. In biological systems, however, biochemical "noise" is beneficial. In fact, it is the root mechanism that drives diversity within the bacteria population. Dr. Sel previously found that when noise reaches a certain level in some genetic circuits, it can prompt cells to transform from one cellular state to another.

For the current study, the researchers went beyond studying the native genetic circuit. Just as electronic maps can find alternate routes between two points, the UT Southwestern researchers also developed an alternative, synthetic genetic circuit that used a different architecture -- or route -- to accomplish the same function as the native circuit.

Dr. Sel believes his group is the first to insert such a synthetic genetic circuit into living bacterium and show that it can replace the biological function of the native version. He said his team was surprised to find that the behavior of the synthetic circuit was most precise, essentially generating less noise. The result was a population less diverse than the natural one. They were even more surprised to find that the lack of precision -- or greater noisiness -- in the native circuit ultimately allows bacteria to survive in a wider range of environments.

"It turns out that sometimes being sloppy can be good," Dr. Sel said. "For these bacteria, the more variable they are, the better they will be able to perform because they can adapt to a wider range of environments."

Dr. Sel said this approach of engineering alternative genetic circuits can in principle be applied even to human cells and possibly help explain why diseased cells have different survival capabilities than healthy ones.

Other UT Southwestern researchers involved were lead author Dr. Tolga Cagatay, instructor of pharmacology, and Dr. Marc Turcotte, assistant professor of pharmacology. Researchers from the California Institute of Technology and the Universitat Politecnica de Catalunya in Spain also participated.

The study was funded by the Welch Foundation, the James S. McDonnell Foundation, the European Commission and the Ministerio de Ciencia e Innovacion in Spain.


Story Source:

The above story is based on materials provided by UT Southwestern Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tolga ağatay, Marc Turcotte, Michael B. Elowitz, Jordi Garcia-Ojalvo, Grol M. Sel. Architecture-Dependent Noise Discriminates Functionally Analogous Differentiation Circuits. Cell, 2009; 139 (3): 512 DOI: 10.1016/j.cell.2009.07.046

Cite This Page:

UT Southwestern Medical Center. "Bacteria 'invest' wisely to survive uncertain times, scientists report." ScienceDaily. ScienceDaily, 1 December 2009. <www.sciencedaily.com/releases/2009/11/091102112102.htm>.
UT Southwestern Medical Center. (2009, December 1). Bacteria 'invest' wisely to survive uncertain times, scientists report. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2009/11/091102112102.htm
UT Southwestern Medical Center. "Bacteria 'invest' wisely to survive uncertain times, scientists report." ScienceDaily. www.sciencedaily.com/releases/2009/11/091102112102.htm (accessed September 2, 2014).

Share This




More Plants & Animals News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Snack Attack: Study Says Action Movies Make You Snack More

Snack Attack: Study Says Action Movies Make You Snack More

Newsy (Sep. 2, 2014) You're more likely to gain weight while watching action flicks than you are watching other types of programming, says a new study published in JAMA. Video provided by Newsy
Powered by NewsLook.com
Get A Mortgage, Receive A Cat — Only In Russia

Get A Mortgage, Receive A Cat — Only In Russia

Newsy (Sep. 2, 2014) The incentive is in keeping with a Russian superstition that it's good luck for a cat to be the first to cross the threshold of a new home. Video provided by Newsy
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Sharks Off the Menu and on the Tourist Trail in Palau

Sharks Off the Menu and on the Tourist Trail in Palau

AFP (Sep. 2, 2014) Tourists in Palau clamour to dive with sharks thanks to a pioneering conservation initiative -- as the island nation plans to completely ban commercial fishing in its vast ocean territory. 01:15 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins