Featured Research

from universities, journals, and other organizations

Protein Srebp2 drives cholesterol formation in prion-infected neuronal cells

Date:
November 18, 2009
Source:
Helmholtz Zentrum München - German Research Center for Environmental Health
Summary:
The regulating protein Srebp2 drives cholesterol formation, which prions need for their propagation, in prion-infected neuronal cells. Scientists anticipate new approaches in drug development to combat prion infection, as a result of these new findings

3D structure of PrPC.
Credit: Wikimedia

The regulating protein Srebp2 drives cholesterol formation, which prions need for their propagation, in prion-infected neuronal cells. With these findings, published in the current issue of the Journal of Biological Chemistry, scientists of Helmholtz Zentrum München and Technische Universität München anticipate new approaches in drug development to combat prion infection.

Related Articles


Prions are causing fatal and infectious diseases of the nervous system, such as the mad cow disease (BSE), scrapie in sheep or Creutzfeldt-Jakob disease in humans. Scientists of Helmholtz Zentrum München and Technische Universität München have now succeeded in elucidating another disease mechanism of prion diseases: The prion-infected cell changes its gene expression and produces increased quantities of cholesterol. Prions need this for their propagation.

Prions are infectious and transform the brains of humans and animals into sponge-like structures. Unlike a virus, a prion only consists of protein -- called prion-protein in its pathological form (PrPSc). Until now, little was known about the processes that take place inside the infected neuronal cell. This made it difficult to develop effective drugs against prion diseases.

Using microarrays developed in the lab of Dr. Johannes Beckers, Christian Bach and colleagues from Helmholtz Zentrum München and Technische Universität made a genome-wide analysis of gene activity in prion-infected and healthy cells. The researchers found over 100 genes which are differentially expressed in infected and healthy cells. This has serious consequences for the infected cells: "Several enzymes of cholesterol biosynthesis are affected," explained Christian Bach, first author of the study. As a consequence, the cholesterol level rises in the infected cells.

The cause of this development is the increased activity of the regulating protein Srebp2. It switches on the genes that are involved in cholesterol biosynthesis and cellular uptake. To achieve this, Srebp2 binds to a special segment encoding the gene to be transcribed -- the sterol regulatory element. This activates the gene, leading to the biosynthesis of the corresponding protein.

In every step of cholesterol biosynthesis Srebp2 switches on different genes, thus exactly controlling gene expression, i.e. the translation of gene information into the corresponding protein. If cholesterol concentration is elevated in a healthy cell, Srebp2 remains in its inactive form and does not bind to the sterol regulatory element. This control mechanism is obviously disturbed in the infected cells, causing increased cholesterol synthesis. "Remarkably, only neuronal cells react in this way -- microglia cells exposed to prions do not increase their cholesterol production," said Professor Hermann Schätzl of the Institute of Virology of Technische Universität München, who led the research together with Dr. Ina Vorberg. Further studies shall elucidate what role disturbed cholesterol regulation plays in neuronal cells for the development of prion diseases and shall thus point the way to new therapy approaches.


Story Source:

The above story is based on materials provided by Helmholtz Zentrum München - German Research Center for Environmental Health. Note: Materials may be edited for content and length.


Journal Reference:

  1. Christian Bach, Sabine Gilch, Romina Rost, Alex D. Greenwood, Marion Horsch, Glaucia N.M. Hajj, Susanne Brodesser, Axel Facius, Sandra Schädler, Konrad Sandhoff, Johannes Beckers, Christine Leib-Mösch, Hermann M. Schätzl und Ina Vorberg. Prion-Induced Activation of Cholesterogenic Gene Expression by a Sterol Regulatory Element Binding Protein (Srebp2) in Neuronal Cells. Journal Biological Chemistry, Vol 284, No. 45, pp 31260-31269 Nov 2009

Cite This Page:

Helmholtz Zentrum München - German Research Center for Environmental Health. "Protein Srebp2 drives cholesterol formation in prion-infected neuronal cells." ScienceDaily. ScienceDaily, 18 November 2009. <www.sciencedaily.com/releases/2009/11/091118101401.htm>.
Helmholtz Zentrum München - German Research Center for Environmental Health. (2009, November 18). Protein Srebp2 drives cholesterol formation in prion-infected neuronal cells. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2009/11/091118101401.htm
Helmholtz Zentrum München - German Research Center for Environmental Health. "Protein Srebp2 drives cholesterol formation in prion-infected neuronal cells." ScienceDaily. www.sciencedaily.com/releases/2009/11/091118101401.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) — Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) — The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) — A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins