Featured Research

from universities, journals, and other organizations

Biological basis of 'bacterial immune system' discovered

Date:
November 28, 2009
Source:
University of Georgia
Summary:
Scientists have discovered how the bacterial immune system works, and the finding could lead to new classes of targeted antibiotics, new tools to study gene function in microorganisms and more stable bacterial cultures used by food and biotechnology industries to make products such as yogurt and cheese.

Bacteria and archaea (first discovered in extreme environments such as deep-sea volcanic vents, such as the one shown above) manage to survive thanks in part to a built-in defense system that helps protect them from many viruses and other invaders.
Credit: OAR/National Undersea Research Program (NURP); NOAA

Bacteria don't have easy lives. In addition to mammalian immune systems that besiege the bugs, they have natural enemies called bacteriophages, viruses that kill half the bacteria on Earth every two days.

Still, bacteria and another class of microorganisms called archaea (first discovered in extreme environments such as deep-sea volcanic vents) manage just fine, thank you, in part because they have a built-in defense system that helps protect them from many viruses and other invaders.

A team of scientists led by researchers at the University of Georgia has now discovered how this bacterial defense system works, and it could lead to new classes of targeted antibiotics, new tools to study gene function in microorganisms and more stable bacterial cultures used by food and biotechnology industries to make products such as yogurt and cheese.

The research was published November 26 in the journal Cell.

"Understanding how bacteria defend themselves gives us important information that can be used to weaken bacteria that are harmful and strengthen bacteria that are helpful," said Michael Terns, a professor of biochemistry and molecular biology in UGA's Franklin College of Arts and Sciences. "We also hope to exploit this knowledge to develop new tools to speed research on microorganisms."

Other authors on the Cell paper include Rebecca Terns, a senior research scientist in biochemistry and molecular biology at UGA; Caryn Hale, a graduate student in the Terns lab at UGA; Lance Wells, an assistant professor of biochemistry and molecular biology and Georgia Cancer Coalition Scholar at UGA and his graduate student Peng Zhao; and research associate Sara Olson, assistant professor Michael Duff and associate professor Brenton Graveley of the University of Connecticut Health Center.

The system, whose mechanism of action was uncovered in the Terns lab (Michael and Rebecca Terns are a husband-wife team), involves a "dynamic duo" made up of a bacterial RNA that recognizes and physically attaches itself to a viral target molecule, and partner proteins that cut up the target, thereby "silencing" the would-be cell killer.

The invader surveillance component of the dynamic duo (an RNA with a viral recognition sequence) comes from sites in the genomes of bacteria and archaea, known technically as "clustered regularly interspaced short palindromic repeats" or more familiarly called CRISPRs. (A palindrome is a word or sentence that reads the same forward and backward.) CRISPR RNAs don't work alone in fighting invaders, though.

Their partners in invader defense are Cas proteins that arise from a suite of genes called "CRISPR-associated" or Cas genes. Together, they form the "CRISPR-Cas system," and the new paper describes this dynamic duo and how they protect bacteria from viruses.

"You can look at one as a police dog that tracks down and latches onto an invader, and the other as a police officer that follows along and `silences' the offender," said Rebecca Terns. "It functions like our own immune system, constantly watching for and neutralizing intruders. But the surveillance is done by tiny CRISPR RNAs rather than antibodies."

What the team discovered was that a particular complex of CRISPR RNAs and a subset of the Cas proteins termed the RAMP module recognizes and destroys invader RNAs that it encounters.

"This work has uncovered intriguing parallels between the bacterial CRISPR-Cas system and the human immune system, suggesting a novel way to target disease-causing bacteria," said Laurie Tompkins, Ph.D., who oversees genetic mechanisms grants at the National Institutes of Health's National Institute of General Medical Sciences. "It may be possible to turn CRISPR-Cas into a suicide machine, killing pathogenic bacteria by an attack on their own molecules, similar to the self-destruction seen in human autoimmune diseases."

Understanding how the system silences invaders opens up opportunities to exploit it. So far, CRISPRs have been found in about half of the bacterial genomes that have been mapped or sequenced and in nearly all sequenced archaeal genomes. Such pervasiveness indicates that an ability to manipulate the CRISPR-Cas system could yield a broad range of applications. For example, using the knowledge that they have obtained in this work, the Terns now envision being able to design new CRISPR RNAs that will take advantage of the system to selectively cleave target RNAs in bacterial cells.

"These could target viruses that wipe out cultures of bacteria used by industry to produce enzymes," said Michael Terns, "or could target the gene products of the bacteria themselves. With this set of Cas proteins, we now know how to cut a target RNA at the site we choose."

"Believe it or not, we have only recently recognized that these microorganisms have a heritable immune system [because it is so different from our own]," added Rebecca Terns.

Remarkably, scientists are already in a position to begin to capitalize on their rapidly growing knowledge of this bacterial immune system.


Story Source:

The above story is based on materials provided by University of Georgia. Note: Materials may be edited for content and length.


Cite This Page:

University of Georgia. "Biological basis of 'bacterial immune system' discovered." ScienceDaily. ScienceDaily, 28 November 2009. <www.sciencedaily.com/releases/2009/11/091125134703.htm>.
University of Georgia. (2009, November 28). Biological basis of 'bacterial immune system' discovered. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2009/11/091125134703.htm
University of Georgia. "Biological basis of 'bacterial immune system' discovered." ScienceDaily. www.sciencedaily.com/releases/2009/11/091125134703.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins