Featured Research

from universities, journals, and other organizations

Botany: Auxin, the multi-tasker, is unmasked

Date:
December 20, 2009
Source:
NWO (Netherlands Organization for Scientific Research)
Summary:
Auxin Response Factors can make and break embryo cells. Auxin, the jack-of-all-trades among plant hormones, has the ‘auxin response factors’ (ARFs) to thank for its multi-talented nature. One of the actions of these ARFs is to prevent a non-embryonic cell from changing into an embryonic cell. Scientists have now shown that without ARFs, a cell like this can actually form the basis for a new embryo.

Auxin, the jack-of-all-trades among plant hormones, has the 'auxin response factors' (ARFs) to thank for its multi-talented nature. One of the actions of these ARFs is to prevent a non-embryonic cell from changing into an embryonic cell. Dutch researcher Eike Rademacher has shown that without ARFs, a cell like this can actually form the basis for a new embryo.

Related Articles


The plant hormone auxin is a veritable jack-of-all-trades: it allows plants to grow, provides roots and makes sure that the stems grow up and the roots grow down. It's also the only hormone with a complex network of transporters at its beck and call, allowing it to go to work anywhere in the plant. But the question of how auxin gives cell-specific instructions for change had remained largely unanswered until now.

Delivering the right message Eike Rademacher, a researcher within the Vidi project of Dolf Weijers, has now discovered how cells actually find out what auxin has planned for them. It happens via the auxin response factors (ARFs), which transfer the auxin message.

Rademacher investigated how auxin directs the characteristics of different cells in a plant embryo. He examined a large number of different cells in which the 23 existing ARFs were connected. By deliberately disconnecting the ARFs in cells, he discovered that virtually every step of a plant's embryonic development was influenced by auxin.

Rademacher established that there are 6 ARFs which act to prevent non-embryonic cells from transforming into embryonic cells. When these six factors are disconnected, non-embryonic cells change into embryo cells, so that two embryos can develop in a single seed. Rademacher swapped ARFs from different cells with each other and observed that the identity of the ARF plays a significant role in the correct response to auxin. A matter of interpretation

Eike Rademacher's findings also offer an explanation for the versatility of auxin. Since different ARFs are active in every cell, each with its own characteristics, the auxin message is translated differently in each cell. The message is always the same, but one cell will hear 'turn into a root' and the other will hear ' turn into a leaf'. The endless combinations of ARFs probably explain why auxin can play so many different roles.

Eike Rademacher's research is part of the project of Vidi winner Dolf Weijers. Weijers is investigating how cell identity is established, as well as communication between cells in plant embryos.


Story Source:

The above story is based on materials provided by NWO (Netherlands Organization for Scientific Research). Note: Materials may be edited for content and length.


Cite This Page:

NWO (Netherlands Organization for Scientific Research). "Botany: Auxin, the multi-tasker, is unmasked." ScienceDaily. ScienceDaily, 20 December 2009. <www.sciencedaily.com/releases/2009/12/091220175100.htm>.
NWO (Netherlands Organization for Scientific Research). (2009, December 20). Botany: Auxin, the multi-tasker, is unmasked. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2009/12/091220175100.htm
NWO (Netherlands Organization for Scientific Research). "Botany: Auxin, the multi-tasker, is unmasked." ScienceDaily. www.sciencedaily.com/releases/2009/12/091220175100.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins