Featured Research

from universities, journals, and other organizations

Multitasking may be Achilles heel for hepatitis C

Date:
January 4, 2010
Source:
Rockefeller University
Summary:
Despite its tiny genome, the hepatitis C virus packs a mean punch. The virus is a microcosm of efficiency, and each of its amino acids plays multiple roles in its survival and ability to sidestep attack. But new research suggests that this fancy footwork and multitasking could be the key to bringing down the virus. The work, which focuses on a once-ignored protein, provides insights on how drug therapy for sufferers of the disease might be improved.

Despite its tiny genome, the hepatitis C virus packs a mean punch. The virus is a microcosm of efficiency, and each of its amino acids plays multiple roles in its survival and ability to sidestep attack. But new research from Rockefeller University suggests that this fancy footwork and multitasking could be the key to bringing down the virus. The work, which focuses on a once-ignored protein, provides insights on how drug therapy for sufferers of the disease might be improved.

Related Articles


The protein, NS2, which is one of the 10 proteins that make up the hepatitis C virus, gained momentum as a plausible drug target in 2006, when Charles M. Rice, head of the Laboratory of Virology and Infectious Disease, and his team solved the structure of its protease domain. The domain spans the second half of NS2 and acts like a molecular scissor, cleaving itself from its neighbor, NS3. (At first, the 10 proteins that make up the virus are strung together in a continuous chain, which is later cleaved by various enzymes.) By that time, it's also known to aid in the production of infectious virus particles.

Now Rice and his team have dissected the nooks and crannies of this protease domain down to the amino acids that make them up, and have mapped which amino acids are responsible for churning out infectious particles, and distinguished them from those involved in the cleaving process. During the researchers' meticulous poking and prodding, deleting and replacing, one amino acid in particular caught their attention: the protein's very last one.

"When we changed or deleted the terminal leucine -- leucine 217 -- infectious virus production shut down," says graduate student Thomas Dentzer, who led the research. "But what really intrigued us was leucine 217's position."

After the protease makes its cut, leucine 217 remains in a protein fold that makes up the protease's active site. Although the active site isn't involved in making infectious virus particles, Dentzer and Rice -- who is also Maurice R. and Corinne P. Greenberg Professor in Virology and scientific director of the Center for the Study of Hepatitis C at Rockefeller -- showed that it is essential for the protease's cleaving activity. With both functions mapping to this tiny region of NS2, the researchers suggest that drugs targeting this area might be able to pack a double punch against the virus.

Since the hepatitis C virus has an uncanny ability to mutate and evade detection just when the body's immune forces are closing in, punching several phases of the virus's life cycle simultaneously may be a better approach than dealing one phase a forceful blow. "A double punch may give the immune system time to attack the virus before it mutates," says Dentzer. "So this is a good therapeutic target to explore."

The fact that this amino acid is exposed on the virus's surface makes the finding all the more exciting and suggests that it is involved in protein-protein interactions during the life cycle of the virus. "We not only have a target that can weaken the virus, but a target that is also accessible," says Rice. "It is a lead that can really help us move forward.


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Dentzer et al. Determinants of the Hepatitis C Virus Nonstructural Protein 2 Protease Domain Required for Production of Infectious Virus. Journal of Virology, 2009; 83 (24): 12702 DOI: 10.1128/JVI.01184-09

Cite This Page:

Rockefeller University. "Multitasking may be Achilles heel for hepatitis C." ScienceDaily. ScienceDaily, 4 January 2010. <www.sciencedaily.com/releases/2009/12/091231153631.htm>.
Rockefeller University. (2010, January 4). Multitasking may be Achilles heel for hepatitis C. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2009/12/091231153631.htm
Rockefeller University. "Multitasking may be Achilles heel for hepatitis C." ScienceDaily. www.sciencedaily.com/releases/2009/12/091231153631.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins