Featured Research

from universities, journals, and other organizations

Sequencing wasp genome sheds new light on sexual parasite

Date:
January 16, 2010
Source:
Vanderbilt University
Summary:
Sequencing the complete genomes of three species of wasp provides new insights into the methods that the bacterial parasite Wolbachia uses to manipulate the sex lives of its hosts.

An image of an Nasonia larva infected with Wolbachia. The parasitic bacteria are tagged with flourescent blue markers.
Credit: Seth Bordenstein

About 100 million years ago, the bacterium Wolbachia came up with a trick that has made it one of the most successful parasites in the animal kingdom: It evolved the ability to manipulate the sex lives of its hosts.

"When it developed this capability, Wolbachia spread rapidly among the world's populations of insects, mites, spiders and nematodes, producing the greatest pandemic in the history of life," says Seth Bordenstein, assistant professor of biological sciences at Vanderbilt, who is studying the relationship between this parasitic bacterium and Nasonia, a genus of small wasps that prey on various species of flies, including houseflies, blowflies and flesh flies.

Bordenstein is a member of the Nasonia Genome Working Group, a collaboration of scientists who published the complete genomes of three species of Nasonia in the January 15 issue of the journal Science. In the paper the group identifies several genes that the wasps appear to have picked up from the bacteria.

This new genetic information has allowed Bordenstein to identify one of the key tools in the bacteria's bag of tricks. It causes a gene in the wasp's immune system to produce less of the protein responsible for detecting bacterial intruders and issuing the chemical alarm signal that activates the wasp's various defense mechanisms. This hijacking of the immune system allows the bacteria to invade the bodies of its hosts with relative impunity, he proposes.

Exactly how the bacteria alters its hosts' reproductive systems to its advantage remains a matter for future study. But scientists have identified the bacteria's basic strategies. Depending on its host, the bacteria either:

  • Kills infected males;
  • Feminizes infected males so they develop as females or infertile pseudo-females;
  • Induces parthenogenesis: the reproduction of infected females without males;
  • Makes the sperm of infected males incompatible with the eggs of uninfected females or females infected with a different Wolbachia strain.

Wolbachia favors female over male offspring because they are present in mature eggs, but not in mature sperm. As a result, only infected females pass the infection on to their offspring.

"This makes them the ultimate feminist weapon," Bordenstein quips.

Although the bacteria's parasitism is limited to arthropods -- animals with exoskeletons instead of backbones like insects, spiders and crustaceans -- its prevalence means that it has a major impact on the biosphere. According to one study, more than 16 percent of the insect species in South and Central America, Mexico, the Caribbean Islands and southern Florida are infected and as many as 70 percent of all insect species are potential hosts.

Recognition of Wolbachia's capabilities has made it a promising candidate for genetic engineers looking for more effective ways to fight human diseases spread by insects. "Once we understand how Wolbachia works, we should be able to add some genes that allow us to control insects that vector human diseases like malaria and dengue fever," says Bordenstein. "There is already a number of research projects supported by the Gates Foundation and the National Institutes of Health pursuing this idea."

Although the ubiquitous bacteria cannot trick the human immune system, it does have an adverse impact on human health. For example, it infects many species of nematodes, including the filarial nematodes that infect more than 200 million people worldwide, causing debilitating inflammatory diseases, such as river blindness and elephantiasis.

In the last 10 years scientists have realized that it is actually the bacterium, not the nematode, that is responsible for most of the symptoms produced by these illnesses. Although Wolbachia can only survive about three days in the human body, the parasitic nematodes act as a continuing source of the bacteria that cause most of the damage. This surprising insight into the disease pathology has improved the treatment of these illnesses: They are now treated with an antibiotic that kills the bacteria and is less toxic than anti-nematode medications.

Bordenstein's research was supported by a grant from the National Institutes of Health and the genome sequencing was funded by the National Human Genome Research Institute. Additional details about the research conducted in the Bordenstein lab is available at http://bordensteinlab.vanderbilt.edu.


Story Source:

The above story is based on materials provided by Vanderbilt University. The original article was written by David F. Salisbury. Note: Materials may be edited for content and length.


Cite This Page:

Vanderbilt University. "Sequencing wasp genome sheds new light on sexual parasite." ScienceDaily. ScienceDaily, 16 January 2010. <www.sciencedaily.com/releases/2010/01/100114143021.htm>.
Vanderbilt University. (2010, January 16). Sequencing wasp genome sheds new light on sexual parasite. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2010/01/100114143021.htm
Vanderbilt University. "Sequencing wasp genome sheds new light on sexual parasite." ScienceDaily. www.sciencedaily.com/releases/2010/01/100114143021.htm (accessed July 30, 2014).

Share This




More Plants & Animals News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Raw: Otters Enjoy Water Slides at Japan Zoo

Raw: Otters Enjoy Water Slides at Japan Zoo

AP (July 30, 2014) River otters were hitting the water slides to beat the summer heatwave on Wednesday at Ichikawa City's Zoological and Botanical Garden. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins