Featured Research

from universities, journals, and other organizations

Low concentrations of oxygen and nutrients slowing biodegradation of Exxon Valdez oil

Date:
January 18, 2010
Source:
Temple University
Summary:
The combination of low concentrations of oxygen and nutrients in the lower layers of the beaches of Alaska's Prince William Sound is slowing the aerobic biodegradation of oil remaining from the 1989 Exxon Valdez spill, according to researchers.

Michel Boufadel (right), director of the Center for Natural Resources Development and Protection in Temple's College of Engineering, places montioring equipment in a well dug along a beach in Alaska's Prince William Sound. Boufadel found that the low concentrations of oxygen and nutrients, along with the flow of water in the beach's lower layer, were hindering the aerobic biodegradation of oil remaining from the Exxon Valdez spill.
Credit: Michel Boufadel/Temple University

The combination of low concentrations of oxygen and nutrients in the lower layers of the beaches of Alaska's Prince William Sound is slowing the aerobic biodegradation of oil remaining from the 1989 Exxon Valdez spill, according to researchers at Temple University.

Considered one of the worst environmental disasters in history, the Exxon Valdez spilled more than 11 million gallons of crude oil into Alaska's Prince William Sound, contaminating some 1,300 miles of shoreline, killing thousands of wildlife and severely impacting Alaska's fishing industry and economy.

In the first five years after the accident, the oil was disappearing at a rate of about 70 percent and calculations showed the oil would be gone within the next few years. However, about seven or eight years ago it was discovered that the oil had in fact slipped to a disappearance rate of around four percent a year and it is estimated that nearly 20,000 gallons of oil remains in the beaches.

The researchers, lead by Michel Boufadel, director of the Center for Natural Resources Development and Protection in Temple's College of Engineering, have been studying the cause of the remaining oil for the past three years.

Their study was posted Jan. 17 in advance of publication on Nature Geoscience's Web-site.

Boufadel said the beaches they studied consisted of two layers: an upper layer that is highly permeable and a lower layer that has very low permeability. He said that, on average, water moved through the upper layer up to 1,000-times faster than the lower layer, and while both layers are made up of essentially the same materials, the lower layer has become more compacted through the movement of the tides over time.

These conditions, said Boufadel, have created a sort of sheltering effect on the oil, which often lies just 1-4 inches below the interface of the two layers.

Boufadel said that oxygen and nutrients are needed for the survival of micro-organisms that eat the oil and aid in aerobic biodegradation of the oil. But without the proper concentrations of the nutrients and oxygen along with the slow movement of water, anaerobic biodegradation is probably occurring, which is usually very slow.

Boufadel, who is also chair of the Department of Civil and Environmental Engineering at Temple, said that an earlier study, published in 1994, had already established a low concentration of nutrients was affecting the remaining Exxon Valdez oil.

He said that because of Alaska's pristine environment, you would expect to find a low concentration of nutrients and this recent study confirmed the earlier findings. What Boufadel and his team found was, on average, that the nutrient concentration in the beaches was 10 times lower than what is required for optimal aerobic biodegradation of oil. They also found that the oxygen levels in the beaches are also insufficient to sustain aerobic biodegradation.

Using groundwater hydraulic studies, the researchers found that the net movement of water through the lower layer of beach was outwards, so it is preventing oxygen from diffusing through the upper layer to where the oil is located.

"You have a high amount of oxygen in the seawater, so you would like to think that the oxygen would diffuse in the beach and get down 2-4 inches into the lower layer and get to the oil," said Boufadel. "But the outward movement of the water in the lower level is blocking the oxygen from spreading down into that lower layer."

Boufadel and his team are now exploring ways to deliver the much needed oxygen and nutrients to the impacted areas in an effort to spur aerobic biodegradation of the remaining oil.

The study was funded by a grant from the Exxon Valdez oil Spill Trustee Council.


Story Source:

The above story is based on materials provided by Temple University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hailong Li, Michel C. Boufadel. Long-term persistence of oil from the Exxon Valdez spill in two-layer beaches. Nature Geoscience, 2010; DOI: 10.1038/ngeo749

Cite This Page:

Temple University. "Low concentrations of oxygen and nutrients slowing biodegradation of Exxon Valdez oil." ScienceDaily. ScienceDaily, 18 January 2010. <www.sciencedaily.com/releases/2010/01/100117150822.htm>.
Temple University. (2010, January 18). Low concentrations of oxygen and nutrients slowing biodegradation of Exxon Valdez oil. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2010/01/100117150822.htm
Temple University. "Low concentrations of oxygen and nutrients slowing biodegradation of Exxon Valdez oil." ScienceDaily. www.sciencedaily.com/releases/2010/01/100117150822.htm (accessed July 26, 2014).

Share This




More Earth & Climate News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Virginia Governor Tours Tornado Aftermath

Virginia Governor Tours Tornado Aftermath

AP (July 25, 2014) Virginia Gov. Terry McAuliffe toured the Cherrystone Family Camping and RV Resort on the Chesapeake Bay today, a day after it was hit by a tornado. The storm claimed two lives and injured dozens of others. (July 25) Video provided by AP
Powered by NewsLook.com
Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Bill Gates: Health, Agriculture Key to Africa's Development

Bill Gates: Health, Agriculture Key to Africa's Development

AFP (July 24, 2014) Health and agriculture development are key if African countries are to overcome poverty and grow, US software billionaire Bill Gates said Thursday, as he received an honourary degree in Ethiopia. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins