Featured Research

from universities, journals, and other organizations

The bigger the animal, the stiffer the 'shoes': Carnivores' feet 'tuned' to their body size

Date:
February 25, 2010
Source:
Duke University
Summary:
If a Tiger's feet were built the same way as a mongoose's feet, they'd have to be about the size of a hippo's feet to support the big cat's weight. But they're not.

A big dog's weight is borne by the big pad behind the toes. The bigger the animal, the stiffer the pad.
Credit: HTO, Wikimedia Commons

If a Tiger's feet were built the same way as a mongoose's feet, they'd have to be about the size of a hippo's feet to support the big cat's weight. But they're not.

For decades, researchers have been looking at how different-sized legs and feet are put together across the four-legged animal kingdom, but until now they overlooked the "shoes," those soft pads on the bottom of the foot that bear the brunt of the animal's walking and running.

New research from scientists in Taiwan and at Duke University has found that the mechanical properties of the pads vary in predictable fashion as animals get larger. In short, bigger critters need stiffer shoes.

Kai-Jung Chi, an assistant professor of physics at National Chung Hsing University in Taiwan ran a series of carefully calibrated "compressive tests" on the footpads of carnivores that have that extra toe halfway up the foreleg, including dogs, wolves, domestic cats, leopards and hyenas. She was measuring the relative stiffness of the pads across species -- how much they deformed under a given amount of compression.

"People hadn't looked at pads," said co-author V. Louise Roth, an associate professor of biology and evolutionary anthropology who was Chi's thesis adviser at Duke. "They've been looking at the bones and muscles, but not that soft tissue."

Whether running, walking or standing still, the bulk of the animal's weight is borne on that pillowy clover-shaped pad behind the four toes, the metapodial-phalangeal pad, or m-p pad for short. It's made from pockets of fatty tissue hemmed in by baffles of collagen. Chi carefully dissected these pads whole from the feet of deceased animals (none of which were euthanized for this study), so that they could be put in the strain meter by themselves without any surrounding structures.

Laid out on a graph, Chi's analysis of 47 carnivore species shows that the area of their m-p pads doesn't increase at the same rate as the body sizes. But the stiffness of pads does increase with size, and that's what keeps the larger animal's feet from being unwieldy.

The mass of the animal increases cubically with its greater size, but the feet don't scale up the same way. "A mouse and an elephant are made with the same ingredients," Roth said. "So how do you do that?"

Earlier research had found that the stresses on the long bones of the limbs stay fairly consistent over the range of sizes, in part because of changes in posture that distribute the stresses of walking differently, Roth said. But that clearly wasn't enough by itself.

The researchers also found that larger animals have a pronounced difference in stiffness between the pads on the forelimbs and the pads on the hind limbs. Bigger animals have relatively softer pads on their rear feet, whereas in smaller animals the front and rear are about the same stiffness.

Chi thinks the softer pads on the rear of the bigger animals may help them recover some energy from each step, and provide a bit more boost to their propulsion. (Think of the way a large predator folds up its forelimbs and launches itself with its hind legs.)

"It is as if the foot pads' stiffness is tuned to enhance how the animal moves and how strength is maintained in its bones," Roth said.

The research appears February 23 in the Journal of the Royal Society, Interface. It was supported by the National Science Foundation.

Chi has new work under way that looks at the construction of the human heel in the same ways.


Story Source:

The above story is based on materials provided by Duke University. The original article was written by Karl Leif Bates. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kai-Jung Chi and V. Louise Roth. Scaling and mechanics of carnivoran footpads reveal the principles of footpad design. Journal of The Royal Society Interface, 2010; DOI: 10.1098/rsif.2009.0556

Cite This Page:

Duke University. "The bigger the animal, the stiffer the 'shoes': Carnivores' feet 'tuned' to their body size." ScienceDaily. ScienceDaily, 25 February 2010. <www.sciencedaily.com/releases/2010/02/100224132507.htm>.
Duke University. (2010, February 25). The bigger the animal, the stiffer the 'shoes': Carnivores' feet 'tuned' to their body size. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2010/02/100224132507.htm
Duke University. "The bigger the animal, the stiffer the 'shoes': Carnivores' feet 'tuned' to their body size." ScienceDaily. www.sciencedaily.com/releases/2010/02/100224132507.htm (accessed August 1, 2014).

Share This




More Plants & Animals News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Visitors Feel Part of the Pack at Wolf Preserve

Visitors Feel Part of the Pack at Wolf Preserve

AP (July 31, 2014) Seacrest Wolf Preserve on the northern Florida panhandle allows more than 10,000 visitors each year to get up close and personal with Arctic and British Columbian Wolves. (July 31) Video provided by AP
Powered by NewsLook.com
Florida Panther Rebound Upsets Ranchers

Florida Panther Rebound Upsets Ranchers

AP (July 31, 2014) With Florida's panther population rebounding, some ranchers complain the protected predators are once again killing their calves. (July 31) Video provided by AP
Powered by NewsLook.com
Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins