Featured Research

from universities, journals, and other organizations

Imaging studies reveal order in programmed cell death

Date:
March 3, 2010
Source:
Rockefeller University
Summary:
Every day, about 10 billion cells in a human body commit suicide. Cells infected by virus, that are transformed or otherwise dysfunctional altruistically sacrifice themselves for the greater good. Now, new imaging experiments have revealed a previously unseen order to this process, showing closely related cells dying in synchrony as a wave of destruction sweeps across their mitochondria, snuffing out the main source of energy that keeps cells alive.

Death wave. New imaging research finds order in what was thought to be the random timing or sudden collapse in apoptosis. A mitochondrial protein, cytochrome-c, is pictured dissipating in an orderly wave around the nucleus (black center) in a cascade that ends in cell death.
Credit: Image courtesy of Rockefeller University

Every day, about 10 billion cells in a human body commit suicide. Cells infected by virus, that are transformed or otherwise dysfunctional altruistically sacrifice themselves for the greater good. Now, new imaging experiments have revealed a previously unseen order to this process, showing closely related cells dying in synchrony as a wave of destruction sweeps across their mitochondria, snuffing out the main source of energy that keeps cells alive.

Related Articles


In experiments published recently in The Journal of Cell Science and Biophysical Journal, researchers inSanford M. Simon's Laboratory of Cellular Biophysics at Rockefeller University photographed the deaths of individual cells, showing an orderly series of events in the staged shut-down of the cell. The experiments revealed that the likelihood of death, as well as the timing, depends on how closely cells are related, not on their proximity to one another or their stage in the cell cycle. The findings rule out, for instance, the hypothesis that cells die in a localized cascade accelerated by the secretion of toxic molecules from dying cells nearby.

"What we saw is that, regardless of their location, only the sister cells remained linked in the timing of their deaths," says Simon. "It suggests that there is not some nonspecific toxic effect here, but that the variability is in the molecular makeup of the cells -- the variability in the population."

Apoptosis is crucial not just in the routine maintenance of life but also in early development -- when some cells, such as those that would otherwise form webbing between human fingers, are programmed to die -- and in the tuning and trimming of the nervous system. "I like to think of it as sculpting, chipping away pieces at a time to create the form," Simon says. A better understanding of apoptosis could help explain certain developmental disorders. What's more, cell death, or the lack thereof, is important in the pathology of some cancers, in which mutant cells fail to die and grow out of control, forming tumors and spreading throughout the body. One potential therapeutic goal would be to learn how to trigger cell death in targeted populations, like tumors.

Investigating the population dynamics of cell death led to the examination, on a much faster timescale, of what was happening inside individual cells during apoptosis. Using single-cell microscopy and fluorescent tags that probe for cell function or for proteins that leave the mitochondria during apoptosis, graduate fellow Patrick Bhola and Postdoctoral Associate Alexa Mattheyses took pictures as the proteins dispersed through the membrane of one mitochondrion and the process spread in a wave to the other mitochondria in a cell. Some scientists had assumed that this happened simultaneously to all mitochondria throughout the cell. "This spatial coordination means that there is an upstream signal for release that is spatially localized within individual cells," says Mattheyses.

"The idea in general was to look at individual events in the cells and see if we could get any insights that we could not get looking macroscopically at whole populations of them," Simon says. Simon's close-up, observational approach has recently yielded new insights into how cells import and export protein cargoes across the cell membrane and how individual HIV particles are born, among other things. Now the microscopy techniques are enabling a deeper understanding of apoptosis, says Bhola. "It's one of those things where if you can't see what's going on, you tend to assume it's random or all at once," he says. "But when you get a good look, you find it happens in a very organized fashion."


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Journal References:

  1. Bhola et al. Spatial and Temporal Dynamics of Mitochondrial Membrane Permeability Waves during Apoptosis. Biophysical Journal, 2009; 97 (8): 2222 DOI: 10.1016/j.bpj.2009.07.056
  2. Bhola et al. Determinism and divergence of apoptosis susceptibility in mammalian cells. Journal of Cell Science, 2009; 122 (23): 4296 DOI: 10.1242/jcs.055590

Cite This Page:

Rockefeller University. "Imaging studies reveal order in programmed cell death." ScienceDaily. ScienceDaily, 3 March 2010. <www.sciencedaily.com/releases/2010/02/100227184921.htm>.
Rockefeller University. (2010, March 3). Imaging studies reveal order in programmed cell death. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2010/02/100227184921.htm
Rockefeller University. "Imaging studies reveal order in programmed cell death." ScienceDaily. www.sciencedaily.com/releases/2010/02/100227184921.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins