Featured Research

from universities, journals, and other organizations

Chemical in bananas identified as potent inhibitor of HIV infection

Date:
March 16, 2010
Source:
University of Michigan Health System
Summary:
A potent new inhibitor of HIV, derived from bananas, may open the door to new treatments to prevent sexual transmission of HIV, according to a new study.

This is a 3-D structure of BanLec, a chemical isolated from bananas identified as a potent new inhibitor of HIV infection.
Credit: University of Michigan Medical School

A potent new inhibitor of HIV, derived from bananas, may open the door to new treatments to prevent sexual transmission of HIV, according to a newly published University of Michigan Medical School study.

Scientists have an emerging interest in lectins, naturally occurring chemicals in plants, because of their ability to halt the chain of reaction that leads to a variety of infections.

In laboratory tests, BanLec, the lectin found in bananas, was as potent as two current anti-HIV drugs. Based on the findings published March 19 in the Journal of Biological Chemistry, BanLec may become a less expensive new component of applied vaginal microbicides, researchers say.

New ways of stopping the spread of the HIV are vitally needed. The rate of new infections of HIV is outpacing the rate of new individuals getting anti-retroviral drugs by 2.5 to1, and at present it appears an effective vaccine is years away.

"HIV is still rampant in the U.S. and the explosion in poorer countries continues to be a bad problem because of tremendous human suffering and the cost of treating it," says study senior author David Marvovitz, M.D., professor of internal medicine at the U-M Medical School.

Although condom use is quite effective, condoms are most successful in preventing infection if used consistently and correctly, which is often not the case.

"That's particularly true in developing countries where women have little control over sexual encounters so development of a long-lasting, self-applied microbicide is very attractive," Markovitz says.

Some of the most promising compounds for inhibiting vaginal and rectal HIV transmission are agents that block HIV prior to integration into its target cell.

The new research describes the complex actions of lectins and their ability to outsmart HIV. Lectins are sugar-binding proteins. They can identify foreign invaders, like a virus, and attach themselves to the pathogen.

The U-M team discovered BanLec, the lectin in bananas, can inhibit HIV infection by binding to the sugar-rich HIV-1 envelope protein, gp120, and blocking its entry to the body.

Co-authors Erwin J. Goldstein, Ph.D., professor emeritus of biological chemistry at U-M and Harry C. Winter, Ph.D., research assistant professor in biological chemistry at U-M, developed the biopurification method to isolate BanLec from bananas. Following their work, the U-M team discovered BanLec is an effective anti-HIV lectin and is similar in potency to T-20 and maraviroc, two anti-HIV drugs currently in clinical use.

Yet therapies using BanLec could be cheaper to create than current anti-retroviral medications which use synthetically produced components, plus BanLec may provide a wider range of protection, researchers say.

"The problem with some HIV drugs is that the virus can mutate and become resistant, but that's much harder to do in the presence of lectins," says lead author Michael D. Swanson, a doctoral student in the graduate program in immunology at the University of Michigan Medical School.

"Lectins can bind to the sugars found on different spots of the HIV-1 envelope, and presumably it will take multiple mutations for the virus to get around them," he says.

Swanson is developing a process to molecularly alter BanLec to enhance its potential clinical utility. Clinical use is considered years away but researchers believe it could be used alone or with other anti-HIV drugs as a vaginal microbicide that prevents HIV infection.

Authors say even modest success could save millions of lives. Other investigators have estimated that 20 percent coverage with a microbicide that is only 60 percent effective against HIV may prevent up to 2.5 million HIV infections in three years.


Story Source:

The above story is based on materials provided by University of Michigan Health System. Note: Materials may be edited for content and length.


Journal Reference:

  1. Swanson et al. A Lectin Isolated from Bananas Is a Potent Inhibitor of HIV Replication. Journal of Biological Chemistry, 2010; 285 (12): 8646 DOI: 10.1074/jbc.M109.034926

Cite This Page:

University of Michigan Health System. "Chemical in bananas identified as potent inhibitor of HIV infection." ScienceDaily. ScienceDaily, 16 March 2010. <www.sciencedaily.com/releases/2010/03/100315091303.htm>.
University of Michigan Health System. (2010, March 16). Chemical in bananas identified as potent inhibitor of HIV infection. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2010/03/100315091303.htm
University of Michigan Health System. "Chemical in bananas identified as potent inhibitor of HIV infection." ScienceDaily. www.sciencedaily.com/releases/2010/03/100315091303.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins