Featured Research

from universities, journals, and other organizations

Newly discovered gene explains mouse embryonic stem cell immortality

Date:
March 24, 2010
Source:
NIH/National Institute on Aging
Summary:
Researchers have discovered a key to embryonic stem cell rejuvenation in a gene -- Zscan4. This breakthrough finding could have major implications for aging research, stem cell biology, regenerative medicine and cancer biology.

Researchers at the National Institute on Aging (NIA), part of the National Institutes of Health, have discovered a key to embryonic stem (ES) cell rejuvenation in a gene -- Zscan4 -- as reported in the March 24, 2010, online issue of Nature. This breakthrough finding could have major implications for aging research, stem cell biology, regenerative medicine and cancer biology.

Related Articles


ES cells are unique because, along with the ability to develop into nearly any type of cell in the body, they can produce infinite generations of new, fully operational ES cells (daughter cells). ES cells are essentially immortal, meaning that they can divide indefinitely to produce additional generations of functional ES daughter cells. Other cells can only produce a certain number of generations of daughter cells before they no longer function properly. This is partially because the telomere, the protective end of the chromosome which carries the cell's genetic information, shortens each time a cell divides. When a telomere becomes too short, it can no longer protect the cell. At that time, the cell dies, turns itself off, known as cell senescence, or produces abnormal and possibly dysfunctional cells.

Until now, the mechanism for the ES cell's immortality had been a mystery. The prevailing theory was that ES cells practiced "self-renewal," meaning that when they divided, they produced daughter cells that were completely unaltered (including telomere length) from the parent. NIA researchers discovered that the process occurring in ES cells can be more appropriately described as "rejuvenation" than the "self-renewal." As in other cells, when ES cells replicate, the daughter cells are not identical to the parent and the telomeres are shorter. However, ES cells express a unique Zscan4 gene that, when activated (or turned on), rejuvenates the ES cell, restoring it to its original vigor.

This rejuvenation includes telomere lengthening through recombination, when a shorter telomere combines with a longer telomere to elongate itself. Zscan4 then turns off. The gene is not turned on every time that the cell replicates -- approximately 5 percent of the cells will have an activated gene at any one point. The process is a cycle of cell replication (with telomere shortening) and intermittent activation of Zscan4 (cell rejuvenation).

Researchers are currently investigating whether a similar mechanism also operates in human cells.


Story Source:

The above story is based on materials provided by NIH/National Institute on Aging. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zalzman et al. Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature, 2010; DOI: 10.1038/nature08882

Cite This Page:

NIH/National Institute on Aging. "Newly discovered gene explains mouse embryonic stem cell immortality." ScienceDaily. ScienceDaily, 24 March 2010. <www.sciencedaily.com/releases/2010/03/100324142117.htm>.
NIH/National Institute on Aging. (2010, March 24). Newly discovered gene explains mouse embryonic stem cell immortality. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2010/03/100324142117.htm
NIH/National Institute on Aging. "Newly discovered gene explains mouse embryonic stem cell immortality." ScienceDaily. www.sciencedaily.com/releases/2010/03/100324142117.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) — The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins