Featured Research

from universities, journals, and other organizations

Newly discovered gene explains mouse embryonic stem cell immortality

Date:
March 24, 2010
Source:
NIH/National Institute on Aging
Summary:
Researchers have discovered a key to embryonic stem cell rejuvenation in a gene -- Zscan4. This breakthrough finding could have major implications for aging research, stem cell biology, regenerative medicine and cancer biology.

Researchers at the National Institute on Aging (NIA), part of the National Institutes of Health, have discovered a key to embryonic stem (ES) cell rejuvenation in a gene -- Zscan4 -- as reported in the March 24, 2010, online issue of Nature. This breakthrough finding could have major implications for aging research, stem cell biology, regenerative medicine and cancer biology.

ES cells are unique because, along with the ability to develop into nearly any type of cell in the body, they can produce infinite generations of new, fully operational ES cells (daughter cells). ES cells are essentially immortal, meaning that they can divide indefinitely to produce additional generations of functional ES daughter cells. Other cells can only produce a certain number of generations of daughter cells before they no longer function properly. This is partially because the telomere, the protective end of the chromosome which carries the cell's genetic information, shortens each time a cell divides. When a telomere becomes too short, it can no longer protect the cell. At that time, the cell dies, turns itself off, known as cell senescence, or produces abnormal and possibly dysfunctional cells.

Until now, the mechanism for the ES cell's immortality had been a mystery. The prevailing theory was that ES cells practiced "self-renewal," meaning that when they divided, they produced daughter cells that were completely unaltered (including telomere length) from the parent. NIA researchers discovered that the process occurring in ES cells can be more appropriately described as "rejuvenation" than the "self-renewal." As in other cells, when ES cells replicate, the daughter cells are not identical to the parent and the telomeres are shorter. However, ES cells express a unique Zscan4 gene that, when activated (or turned on), rejuvenates the ES cell, restoring it to its original vigor.

This rejuvenation includes telomere lengthening through recombination, when a shorter telomere combines with a longer telomere to elongate itself. Zscan4 then turns off. The gene is not turned on every time that the cell replicates -- approximately 5 percent of the cells will have an activated gene at any one point. The process is a cycle of cell replication (with telomere shortening) and intermittent activation of Zscan4 (cell rejuvenation).

Researchers are currently investigating whether a similar mechanism also operates in human cells.


Story Source:

The above story is based on materials provided by NIH/National Institute on Aging. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zalzman et al. Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature, 2010; DOI: 10.1038/nature08882

Cite This Page:

NIH/National Institute on Aging. "Newly discovered gene explains mouse embryonic stem cell immortality." ScienceDaily. ScienceDaily, 24 March 2010. <www.sciencedaily.com/releases/2010/03/100324142117.htm>.
NIH/National Institute on Aging. (2010, March 24). Newly discovered gene explains mouse embryonic stem cell immortality. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2010/03/100324142117.htm
NIH/National Institute on Aging. "Newly discovered gene explains mouse embryonic stem cell immortality." ScienceDaily. www.sciencedaily.com/releases/2010/03/100324142117.htm (accessed April 17, 2014).

Share This



More Health & Medicine News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com
Formerly Conjoined Twins Released From Dallas Hospital

Formerly Conjoined Twins Released From Dallas Hospital

Newsy (Apr. 16, 2014) Conjoined twins Emmett and Owen Ezell were separated by doctors in August. Now, nearly nine months later, they're being released from the hospital. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins