Featured Research

from universities, journals, and other organizations

For stem cells, practice makes perfect

Date:
April 22, 2010
Source:
Carnegie Institution
Summary:
Multipotent stem cells have the capacity to develop into different types of cells by reprogramming their DNA. In a new study, researchers have found that reprogramming is imperfect in the early stages of differentiation, with some genes turned on and off at random. As cell divisions continue, the stability of the differentiation process increases by a factor of 100.

Follicle cells show variable gene expression.
Credit: Image courtesy of Carnegie Institution

Multipotent stem cells have the capacity to develop into different types of cells by reprogramming their DNA to turn on different combinations of genes, a process called "differentiation." In a new study, researchers from the Carnegie Institution for Science have found that reprogramming is imperfect in the early stages of differentiation, with some genes turned on and off at random.

As cell divisions continue, the stability of the differentiation process increases by a factor of 100. The finding will help scientists understand how stem cells reprogram their genes and why fully differentiated cells are very hard to reprogram, knowledge with potential impacts on aging, regenerative medicine, and cancer research.

Allan Spradling and Andrew Skora of the Carnegie Institution's Department of Embryology studied stem cells in the ovaries of the fruit fly Drosophila. The stem cells develop into specialized cells, called follicle cells, over a series of nine generations of cell divisions. Using a biochemical method known as a GAL4-UAS reporter gene, the researchers were able to keep track of genes located at many different sites on the chromosomes as the follicle cells developed. If the programming of a reporter gene was perfectly transmitted from parent to daughter cell, then the follicle cells would express the gene at the same level after each division.

But the researchers found that in the first division alone random changes occurred 41% of the time. By the fifth division changes took place about 8% of the time. By the ninth division, however, such changes happened only 0.37% of the time, a stability increase of more than 100-fold.

The instability of epigenetic information during the early differentiation of ovarian stem cells surprised the researchers. They speculate that stem cells may be deficient in epigenetic inheritance machinery in order to prevent them from differentiating prematurely, and thereby to help maintain the flexibility to give rise to many different cell types. "Stem cells appear unable to faithfully pass on a particular genetic program to their daughter cells," says Spradling. "Apparently, before one particular kind of cell can differentiate from a stem cell, its progenitors have to learn how to maintain and transmit epigenetic (programming) information."

Spradling explains that the mechanism by which the reprogramming and stabilization occurs is not well understood, but their research confirmed the expectation that at least some of the critical changes take place in the gene-bearing chromosomes themselves, rather than in external factors such as the cell's environment or signals from other cells. Most likely the reprogramming alters proteins on the chromosome which package the DNA and control which genes are expressed. Changes in chromosome structure, as opposed to changes in the genes themselves, that can be passed on from one generation to the next are called epigenetic changes. The researchers hope that their research will provide a way to learn more about the methods cells use to transmit epigenetic information faithfully during cell division.

"Epigenetic inheritance underlies the ability of multi-celled organisms to develop from single-celled zygotes to complex creatures with an array of specialized cells and tissues," says Spradling. "But the amount of epigenetic information transmitted at different stages of cellular differentiation remains little known. Applying the GAL4-UAS system within a defined stem cell lineage allows us to measure the stability of epigenetic information quantitatively, and to follow how it changes during development. This will have an impact across a broad swath of stem cell research."

The results of this research are published in the Proceedings of the National Academy of Sciences.


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. Andrew D. Skora, Allan C. Spradling. Epigenetic stability increases extensively during Drosophila follicle stem cell differentiation. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.1003180107

Cite This Page:

Carnegie Institution. "For stem cells, practice makes perfect." ScienceDaily. ScienceDaily, 22 April 2010. <www.sciencedaily.com/releases/2010/04/100405152549.htm>.
Carnegie Institution. (2010, April 22). For stem cells, practice makes perfect. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2010/04/100405152549.htm
Carnegie Institution. "For stem cells, practice makes perfect." ScienceDaily. www.sciencedaily.com/releases/2010/04/100405152549.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins