Featured Research

from universities, journals, and other organizations

New cell measurement system

Date:
April 19, 2010
Source:
Massachusetts Institute of Technology
Summary:
Using a sensor that weighs cells with unprecedented precision, researchers have measured the rate at which single cells accumulate mass -- a feat that could shed light on how cells control their growth and why those controls fail in cancer cells.

Using a sensor that weighs cells with unprecedented precision, MIT and Harvard researchers have measured the rate at which single cells accumulate mass -- a feat that could shed light on how cells control their growth and why those controls fail in cancer cells.

Related Articles


The research team, led by Scott Manalis, MIT associate professor of biological engineering, revealed that individual cells vary greatly in their growth rates, and also found evidence that cells grow exponentially (meaning they grow faster as they become larger).

The new measurement system, reported in the April 11 edition of the journal Nature Methods, is the first technique that can measure cells' mass as they grow over a period of time, ranging from five to 30 minutes. Previous methods for measuring cell growth rates have focused on volume or length measurements, and have not yet exhibited the necessary precision for revealing single cell growth models.

How they did it: The cell-mass sensor, which Manalis first demonstrated in 2007, consists of a fluid-filled microchannel etched in a tiny silicon slab that vibrates inside a vacuum. As cells flow through the channel, one at a time, their mass slightly alters the slab's vibration frequency. The mass of the cell can be calculated from that change in frequency, with a resolution as low as a femtogram (10-15 grams).

Michel Godin, a former postdoctoral associate in Manalis' lab and co-lead author of the paper, developed a way to trap a cell within the microchannel by precisely coordinating the flow direction. That enables the researchers to repeatedly pass a single cell through the channel every second or so, measuring it each time it moves through.

The researchers studied four types of cells: two strains of bacteria (E. coli and B. subtilis), a strain of yeast and mammalian lymphoblasts (precursors to white blood cells). They showed that B. subtilis cells appear to grow exponentially, but they did not obtain conclusive evidence for E. coli. That's because there is so much variation between individual cell growth rates in E. coli, even for cells of similar mass, says Francisco Delgado, a grad student in Manalis' lab and co-lead author of the paper.

If cells do grow exponentially, it means there must be some kind of mechanism to control that growth. Otherwise, when cells divide into two slightly different-sized daughter cells, as they often do, the larger cell in each generation would always grow faster than the smaller cell, leading to inconsistent cell sizes.

"If there were no control over the process, the variation in cell size would be all over the map," says Marc Kirschner, professor of systems biology at Harvard Medical School and an author of the paper. However, biologists don't know yet how that control mechanism might work.

Next steps: In their current studies, the researchers are tagging proteins inside the cell with fluorescent molecules that reveal what stage of the cell cycle the cell is in, allowing them to correlate cell size with cell cycle position. They are also working on a way to add chemicals such as nutrients, antibiotics and cancer drugs to the fluid inside the microchannel, so they can study how those substances affect growth rates.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by Anne Trafton, MIT News Office. Note: Materials may be edited for content and length.


Journal Reference:

  1. Godin et al. Using buoyant mass to measure the growth of single cells. Nature Methods, 2010; DOI: 10.1038/nmeth.1452

Cite This Page:

Massachusetts Institute of Technology. "New cell measurement system." ScienceDaily. ScienceDaily, 19 April 2010. <www.sciencedaily.com/releases/2010/04/100411143353.htm>.
Massachusetts Institute of Technology. (2010, April 19). New cell measurement system. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2010/04/100411143353.htm
Massachusetts Institute of Technology. "New cell measurement system." ScienceDaily. www.sciencedaily.com/releases/2010/04/100411143353.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com
Madagascar Working to Contain Plague Outbreak

Madagascar Working to Contain Plague Outbreak

AFP (Nov. 24, 2014) Madagascar said Monday it is trying to contain an outbreak of plague -- similar to the Black Death that swept Medieval Europe -- that has killed 40 people and is spreading to the capital Antananarivo. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins