Featured Research

from universities, journals, and other organizations

Key component identified that helps plants go green

Date:
September 20, 2010
Source:
Duke University
Summary:
A team of researchers has found a central part in the machinery that turns plants green when they sense light. In the Rube Goldberg world of cellular mechanics, this key player turns out to be a garbage truck.

A team of researchers from Duke University and the Salk Institute for Biological Studies has found a central part in the machinery that turns plants green when they sense light.

In the Rube Goldberg world of cellular mechanics, this key player turns out to be a garbage truck.

Light is so essential for plants that they have two different systems to take advantage of it, explains Meng Chen, an assistant professor of biology at Duke.

There's the familiar system of organelles called chloroplasts that turn sunlight into fuel via photosynthesis. The photosynthetic pigment inside chloroplasts, chlorophyll, is where the green color comes from.

And then there's a system of light-sensitive proteins called photoreceptors that use light as information and direct plant development and growth. One of the things the plant does with that information is control how it makes chloroplasts. "The greening process is completely dependent on the presence of light. However, how light triggers the making of chloroplasts is still unknown," Chen said.

In a paper appearing in the June 25 issue of Cell, Chen and his team have identified a key intermediary between the light system for information and the light system that makes fuel. The hope is that this knowledge will help researchers use a plant's own photo-sensory systems to increase agricultural yields or improve the photosynthesis of biofuel crops.

"Light is probably the most important environmental cue for a plant," said co-author Joanne Chory, a Howard Hughes Medical Institute investigator at the Salk Institute for Biological Studies. "Understanding how light signaling triggers morphological changes in the plant will have a really big impact on every facet of plant biology."

Plants have an array of photoreceptors that are tuned to different wavelengths of light. One type, called phytochromes, are sensitive to red and far-red light and play a major role in the making of chloroplasts and the growth of the stem, said Chen, who is the first author on the study.

One of the first things that happens when the plant detects light is that these phytochromes move from the cell's cytoplasm to its nucleus, where the genes are kept. The photoreceptors gather in discrete spots known as phytochrome nuclear bodies. In an earlier study, Chen had found that the size and number of phytochrome nuclear bodies was directly related to light intensity.

Chen, who started this line of work as a postdoctoral researcher in Chory's lab at the Salk Institute, ran genetic screens for mutants with abnormal phytochrome nuclear bodies. He identified a new gene, hemera, that seems to be required for both the localization and the signaling of phytochrome.

He named the gene for the Greek goddess of daylight, Hemera. It is present in all land plants studied so far.

Mutant plants without hemera were found to have dramatically reduced sensitivity to red and far-red light, they failed to develop chloroplasts, were albino, and died while still only seedlings. Without Hemera, "a plant is blind to light and the chloroplasts can't develop," Chen said.

The prevailing model of chloroplast development involves signaling molecules called PIFs that hold chloroplast development back when the plant senses darkness. But when phytochromes are activated by light, they destroy the PIFs, clearing the way for chloroplast development. PIFs tended to aggregate around these phytochrome nuclear bodies before being destroyed. Hemera also tended to be found near the nuclear bodies, suggesting that the nuclear bodies were the site of PIF destruction.

In a series of experiments with hemera mutants, the team found these plants tended to have smaller phytochrome nuclear bodies and were unable to remove PIFs in light, which could explain why the mutants weren't making chloroplasts.

The team also found that hemera is structurally similar to a yeast protein called RAD23, that is known to be the garbage truck that rounds up other proteins flagged for destruction and carries them to the place where they are ground up. They inserted Hemera from Arabidopsis plants into yeast that lacked RAD23, and found that it partially took over RAD23's job, Chen said.

Other researchers who contributed to the study include postdoctoral fellows Rafaelo M. Galvγo and Meina Li from the Chen laboratory at Duke, and Brian Burger, Jane Bugea and Jack Bolado at the Salk Institute.

Chen's work on this project was supported in part by a National Science Foundation grant from the American Recovery and Reinvestment Act (ARRA) and Duke University. The work at the Salk Institute was supported in part by the National Institutes of Health and the Howard Hughes Medical Institute.


Story Source:

The above story is based on materials provided by Duke University. The original article was written by Karl Leif Bates. Note: Materials may be edited for content and length.


Journal Reference:

  1. Meng Chen, Rafaelo M. Galvγo, Meina Li, Brian Burger, Jane Bugea, Jack Bolado, Joanne Chory. Arabidopsis HEMERA/pTAC12 Initiates Photomorphogenesis by Phytochromes. Cell, 2010; 141 (7): 1230 DOI: 10.1016/j.cell.2010.05.007

Cite This Page:

Duke University. "Key component identified that helps plants go green." ScienceDaily. ScienceDaily, 20 September 2010. <www.sciencedaily.com/releases/2010/06/100629170926.htm>.
Duke University. (2010, September 20). Key component identified that helps plants go green. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2010/06/100629170926.htm
Duke University. "Key component identified that helps plants go green." ScienceDaily. www.sciencedaily.com/releases/2010/06/100629170926.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins