Featured Research

from universities, journals, and other organizations

Understanding complex emulsions

Date:
July 2, 2010
Source:
Institute of Food Research
Summary:
New work has shown how sugar beet pectin acts as an efficient emulsifier, using a technique that could be used to unravel in the finest detail how such important food ingredients work.

An oil droplet attached to the end of an AFM cantilever. Around 1500 of these droplets would fit on the head of a pin.
Credit: Image courtesy of Institute of Food Research

New work from the Institute of Food Research has shown how sugar beet pectin acts as an efficient emulsifier, using a technique that could be used to unravel in the finest detail how such important food ingredients work.

Emulsions are stabilised dispersions of oil droplets in water and are found everywhere, in pharmaceuticals, cosmetics and in a wide range of foods. Emulsions can be stabilised and prevented from separating by emulsifiers: molecules that accumulate at and stabilise the surface of the droplets.

Pectin is a familiar but complex polysaccharide that forms an integral part of plant cell walls. For commercial use pectin is usually derived from waste material in citrus processing and cider making, but pectin extracted from sugar beet pulp is attracting more and more interest because it has unusual emulsifying properties.

Supported by the Biotechnology and Biological Sciences Research Council (BBSRC), Dr Axel Gromer working with Dr Rob Penfold, and Professor Vic Morris and his group at the Institute of Food Research, an Institute of the BBSRC, have probed the molecular basis of sugar beet pectin's emulsifying properties. At the same time they have been uncovering new ways to learn more about how emulsions themselves work. They have used atomic force microscopy (AFM) to image the structures formed by sugar beet pectin at oil droplet surfaces and, for the first time, to measure directly the effects of these surface structures on the forces between two oil drops in water.

The studies, published in the journal Soft Matter, have revealed new insights into the way droplets in emulsions interact with each other. These techniques allow us to understand how droplets behave when they collide: do they fuse, aggregate or bounce apart, and why? Such understanding underpins the ability to design emulsions with improved quality and to engineer such structures to produce new functional foods with improved nutritional and health benefits.


Story Source:

The above story is based on materials provided by Institute of Food Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. Axel Gromer, Robert Penfold, A. Patrick Gunning, Andrew R. Kirby, Victor J. Morris. Molecular basis for the emulsifying properties of sugar beet pectin studied by atomic force microscopy and force spectroscopy. Soft Matter, 2010; DOI: 10.1039/c0sm00089b

Cite This Page:

Institute of Food Research. "Understanding complex emulsions." ScienceDaily. ScienceDaily, 2 July 2010. <www.sciencedaily.com/releases/2010/07/100702100412.htm>.
Institute of Food Research. (2010, July 2). Understanding complex emulsions. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2010/07/100702100412.htm
Institute of Food Research. "Understanding complex emulsions." ScienceDaily. www.sciencedaily.com/releases/2010/07/100702100412.htm (accessed August 21, 2014).

Share This




More Plants & Animals News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) — Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins