Featured Research

from universities, journals, and other organizations

Natural selection alone can explain eusociality, scientists say

Date:
August 26, 2010
Source:
Harvard University
Summary:
Scientists have sketched a new map of the "evolutionary labyrinth" species must traverse to reach eusociality, the rare but spectacularly successful social structure where individuals cooperate to raise offspring. Their modeling shows that natural selection alone can explain the evolution of eusocial behavior, without the need for kin selection theory.

Scientists at Harvard University have sketched a new map of the "evolutionary labyrinth" species must traverse to reach eusociality, the rare but spectacularly successful social structure where individuals cooperate to raise offspring.

Related Articles


Mathematical biologists Martin A. Nowak and Corina E. Tarnita and evolutionary biologist Edward O. Wilson present their work this week in the journal Nature. Their modeling shows that the straightforward natural selection theory alone can explain the evolution of eusocial behavior, without the need for kin selection theory.

"The empirical evidence gathered in our paper demonstrates that eusociality is exceedingly rare because species must navigate a lengthy evolutionary labyrinth to reach this state," says Wilson, the Pellegrino University Professor, Emeritus, at Harvard. "We hope our new theory for the evolution of eusociality will open up sociobiology to new avenues of research by liberating the study of social evolution from mandatory adherence to kin selection theory. After four decades ruling the roost, it is time to recognize this theory's very limited prowess."

Eusocial organisms, such as ants, wasps, and bees, form hierarchical social systems with reproductive queens and sterile workers -- meaning many individuals take the evolutionarily counterintuitive step of sacrificing their own reproduction to care for the offspring of others. For four decades kin selection theory, based on the concept of inclusive fitness, has been the major theoretical attempt to explain the evolution of such behavior.

"In some situations, inclusive fitness theory, which tries to calculate fitness effects conferred on relatives, is a suitable alternative to standard population genetics," says Nowak, professor of mathematics and of biology at Harvard and director of the university's Program for Evolutionary Dynamics. "But it is not applicable in general. Our analysis shows that inclusive fitness theory rests on fragile assumptions, which rarely hold in nature. Contrary to many previous claims, we prove that inclusive fitness theory is not an extended theory of evolution and is not needed to explain eusociality. Standard natural selection theory represents a simpler and superior approach, and provides an exact framework for interpreting empirical observations."

Eusociality is rare, but important in evolutionary biology because the few species that adhere to it -- including social insects and, to an extent, humans -- rank among the planet's most dominant. The biomass of ants alone composes more than half that of all insects, exceeding that of all terrestrial nonhuman vertebrates combined. Humans, who are more loosely eusocial, dominate land vertebrates.

"Eusociality has arisen independently some 10 to 20 times in the course of evolution," says Tarnita, a junior fellow in Harvard's Society of Fellows. "Our model shows that it is difficult to get eusociality in the first place, but that it is very stable once it is established. A colony behaves like a 'superorganism,' reproducing the genome of the queen and the sperm she has stored."

Nowak, Tarnita, and Wilson's proposal on eusocial evolution sketches out three distinct steps species can take to sidestep eusociality's evolutionary cost:

  • First, species must form groups within a population, such as when nests or food attract individuals to discrete locations some distance apart, when parents and offspring remain together, or when migrating flocks follow leaders.
  • Second, species must accumulate traits, arising through ordinary natural selection, that favor the switch to eusociality. For instance, Ceratina and Lasioglossum bees, which appear perched on the cusp of eusociality, cooperate in foraging, tunneling, and guarding resources. Another such pre-adaptation is progressive provisioning, in which a female builds a nest, lays an egg in it, and then feeds or guards larvae until they mature. Most importantly, the candidate species must build a defensible nest.
  • Finally, individuals must develop genes supporting eusociality, whether by mutation or recombination. Crossing the threshold to eusociality essentially requires that a female and her offspring not disperse to start new, individual nests, but rather remain at the old nest. While eusocial genes have yet to be identified, at least two eusocial ant species are known to have genes that quell the urge to roam from the nest.

If these steps are followed and a species becomes eusocial, the evolutionary costs of individuals foregoing reproduction are compensated by the greatly reduced mortality of the queen and her larvae, which are protected by the colony. In some ant species, a queen that might live for only a few months if alone can live for 25 years or more as part of a colony, producing millions of offspring in the process.

Nowak, Tarnita, and Wilson's work was funded by the John Templeton Foundation, the National Science Foundation, the National Institutes of Health, the Bill and Melinda Gates Foundation, and J. Epstein.


Story Source:

The above story is based on materials provided by Harvard University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Martin A. Nowak, Corina E. Tarnita, Edward O. Wilson. The evolution of eusociality. Nature, 2010; 466 (7310): 1057 DOI: 10.1038/nature09205

Cite This Page:

Harvard University. "Natural selection alone can explain eusociality, scientists say." ScienceDaily. ScienceDaily, 26 August 2010. <www.sciencedaily.com/releases/2010/08/100825131437.htm>.
Harvard University. (2010, August 26). Natural selection alone can explain eusociality, scientists say. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2010/08/100825131437.htm
Harvard University. "Natural selection alone can explain eusociality, scientists say." ScienceDaily. www.sciencedaily.com/releases/2010/08/100825131437.htm (accessed October 30, 2014).

Share This



More Plants & Animals News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How A Chorus Led Scientists To A New Frog Species

How A Chorus Led Scientists To A New Frog Species

Newsy (Oct. 30, 2014) A frog noticed by a conservationist on New York's Staten Island has been confirmed as a new species after extensive study and genetic testing. Video provided by Newsy
Powered by NewsLook.com
Surfer Accidentally Stands on Shark, Gets Bitten

Surfer Accidentally Stands on Shark, Gets Bitten

AP (Oct. 30, 2014) A 20-year-old competition surfer said on Thursday he accidentally stepped on a shark's head before it bit him off the Australian east coast. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Ebola Inflicts Heavy Toll on Guinean Potato Trade

Ebola Inflicts Heavy Toll on Guinean Potato Trade

AFP (Oct. 30, 2014) The Ebola epidemic has seen Senegal and Guinea Bissau close its borders with Guinea and the economic consequences have started to be felt, especially in Fouta Djallon, where the renowned potato industry has been hit hard. Duration: 02:01 Video provided by AFP
Powered by NewsLook.com
Genetically Altered Glowing Flower on Display in Tokyo

Genetically Altered Glowing Flower on Display in Tokyo

Reuters - Innovations Video Online (Oct. 30, 2014) Just in time for Halloween, a glowing flower goes on display in Tokyo. Instead of sorcery and magic, its creators used science to genetically modify the flower, adding a naturally fluorescent plankton protein to its genetic mix. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins