Featured Research

from universities, journals, and other organizations

Acidity regulates cell membrane synthesis

Date:
August 27, 2010
Source:
Universiteit van Amsterdam (UVA)
Summary:
Acidity (pH) in cells of baker's yeast regulate the synthesis of cell membranes by controlling the production of enzymes that synthesize membranes. The elucidated mechanism is so simple and universal that it is highly likely that it determines many cellular processes in all forms of life.

Acidity (pH) in cells of baker's yeast, Saccharomyces cerevisiae, regulate the synthesis of cell membranes by controlling the production of enzymes that synthesize membranes. These are the findings of researchers at the University of British Columbia in Vancouver, Canada, in close collaboration with systems biologists at the University of Amsterdam (UvA). The results of this research have just been published in the journal Science. The elucidated mechanism is so simple and universal that it is highly likely that it determines many processes in the cell in all forms of life.

The UvA scientists, led by Dr. Gertien Smits, have been studying the regulation of acidity in the cell. They have developed a method to accurately and quickly measure the pH in live, growing cells. Understanding this process is important because small changes in acidity could have major consequences for the functioning of a living cell. The acidity in the cell is determined by the number of protons. These small charged particles can easily bind to many molecules in living cells, such as proteins, DNA, lipids and metabolites, or just as easily detach from the molecules. Whether or not a proton binds affects the charge properties of these molecules, and hence their properties. Given that this can occur for so many molecules in life, small changes may have big consequences. However, precisely because the process is so sensitive, until now it was very difficult to properly understand the dynamics of the acidity and the effects of their changes.

Acidity as regulator

The Vancouver researchers have focused their research on the regulation of membrane synthesis. They have studied the regulation of a central regulatory protein, Opi1, herein. This protein in the nucleus can inhibit the production of a number of membrane synthesis proteins, but is usually kept outside the nucleus because it binds to a specific lipid for membranes, phosphatidic acid. Together, the research groups from Vancouver and Amsterdam have come up with the hypothesis that the acidity in the cell can sometimes play an important role in regulating Opi1, as the physical and chemical properties of phosphatidic acid are such that the charge can be greatly determined by the proton concentration.

From signal to signal

Through the combination of measurements of pH and determination of the localization of Opi1 in living yeast cells, the correlation between the two has become increasingly apparent. Ultimately, the researchers have managed to show that the interaction between the protein and lipid is directly determined by the acidity in a very small pH range in the cell. This is precisely the range in which the acidity in living yeast cells varies depending on the presence of nutrients. In this way a signal for the presence of food can be converted into a signal to make membranes, and thereby grow. Based on the results the researchers suggest that it is highly probable that the pH determines more regulatory mechanisms and interactions in the cell.

The new findings have important implications for understanding human metabolism and disease because lipid structure and function are very similar amongst all organisms. Further work is needed to explore the implications of this discovery for other areas, such as tumor progression – because both phosphatidic acid and pH play important roles in this process – and brain research – because brain cells dynamically change their cellular pH, implying they, too, use a pH sensor.


Story Source:

The above story is based on materials provided by Universiteit van Amsterdam (UVA). Note: Materials may be edited for content and length.


Journal Reference:

  1. Barry P. Young, John J. H. Shin, Rick Orij, Jesse T. Chao, Shu Chen Li, Xue Li Guan, Anthony Khong, Eric Jan, Markus R. Wenk, William A. Prinz, Gertien J. Smits, and Christopher J. R. Loewen. Phosphatidic Acid Is a pH Biosensor That Links Membrane Biogenesis to Metabolism. Science, 27 August 2010: 1085-1088 DOI: 10.1126/science.1191026

Cite This Page:

Universiteit van Amsterdam (UVA). "Acidity regulates cell membrane synthesis." ScienceDaily. ScienceDaily, 27 August 2010. <www.sciencedaily.com/releases/2010/08/100826141339.htm>.
Universiteit van Amsterdam (UVA). (2010, August 27). Acidity regulates cell membrane synthesis. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2010/08/100826141339.htm
Universiteit van Amsterdam (UVA). "Acidity regulates cell membrane synthesis." ScienceDaily. www.sciencedaily.com/releases/2010/08/100826141339.htm (accessed October 20, 2014).

Share This



More Plants & Animals News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins