Featured Research

from universities, journals, and other organizations

Scientists decode genomes of precocious fruit flies

Date:
September 19, 2010
Source:
University of California -- Irvine
Summary:
Researchers have deciphered how lowly fruit flies bred to rapidly develop and reproduce actually evolve over time. The findings contradict the long-held belief that sexual beings evolve the same way simpler organisms do and could fundamentally alter the direction of genetic research for new pharmaceuticals and other products.

UC Irvine doctoral student Molly Burke used fruit flies to find more than 500 new genes linked to aging and sexual development.
Credit: Steve Zylius / University Communications

UC Irvine researchers have deciphered how lowly fruit flies bred to rapidly develop and reproduce actually evolve over time. The findings, reported in the Sept. 15 online issue of Nature, contradict the long-held belief that sexual beings evolve the same way simpler organisms do and could fundamentally alter the direction of genetic research for new pharmaceuticals and other products.

Related Articles


"This is actually decoding the key DNA in the evolution of aging, development and fertility," said ecology & evolutionary biology professor Michael Rose, whose laboratory began breeding the "super flies" used in the current study in 1991 -- or 600 generations ago. He joked that they "live fast and die young."

Lead author and doctoral student Molly Burke compared the super flies to a control group on a genome-wide basis, the first time such a study of a sexually reproducing species has been done. The work married DNA "soup" gathered from the adapted flies with cheap, efficient technology that uses cutting-edge informatics tools to analyze the DNA of entire organisms. Burke found evidence of evolution in more than 500 genes that could be linked to a variety of traits, including size, sexual maturation and life span, indicating a gradual, widespread network of selective adaptation.

"It's really exciting," she said. "This is a new way of identifying genes that are important for traits we're interested in -- as opposed to the old hunting and pecking, looking at one gene at a time."

For decades, most researchers have assumed that sexual species evolve the same way single-cell bacteria do: A genetic mutation sweeps through a population and quickly becomes "fixated" on a particular portion of DNA. But the UCI work shows that when sex is involved, it's far more complicated.

"This research really upends the dominant paradigm about how species evolve," said ecology & evolutionary biology professor Anthony Long, the primary investigator.

Based on that flawed paradigm, Rose noted, drugs have been developed to treat diabetes, heart disease and other maladies, some with serious side effects. He said those side effects probably occur because researchers were targeting single genes, rather than the hundreds of possible gene groups like those Burke found in the flies.

Most people don't think of flies as close relatives, but the UCI team said previous research had established that humans and other mammals share 70 percent of the same genes as the tiny, banana-eating insect known as Drosophila melanogaster.

Scientists who did not participate in the work agreed that it could change the direction of much research. "Anyone who expects to find a single solution for problems like aging will be disappointed, because this work suggests there's no one genetic target that could be fixed," said Richard Lenski, an evolutionary biologist at Michigan State University. "On the other hand, it means there are many genetic factors that can be further investigated."

Kevin Thornton and Parvin Shahrestani of UCI and Joseph Dunham of the University of Southern California are co-authors of the study, which was funded by UCI and National Science Foundation grants.


Story Source:

The above story is based on materials provided by University of California -- Irvine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Molly K. Burke, Joseph P. Dunham, Parvin Shahrestani, Kevin R. Thornton, Michael R. Rose, Anthony D. Long. Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature, 2010; DOI: 10.1038/nature09352

Cite This Page:

University of California -- Irvine. "Scientists decode genomes of precocious fruit flies." ScienceDaily. ScienceDaily, 19 September 2010. <www.sciencedaily.com/releases/2010/09/100916162537.htm>.
University of California -- Irvine. (2010, September 19). Scientists decode genomes of precocious fruit flies. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2010/09/100916162537.htm
University of California -- Irvine. "Scientists decode genomes of precocious fruit flies." ScienceDaily. www.sciencedaily.com/releases/2010/09/100916162537.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How To: Mixed Green Salad Topped With Camembert Cheese

How To: Mixed Green Salad Topped With Camembert Cheese

Rumble (Jan. 26, 2015) Learn how to make a mixed green salad topped with a pan-seared camembert cheese in only a minute! Music: Courtesy of Audio Network. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Husky Puppy Plays With Ferret

Husky Puppy Plays With Ferret

Rumble (Jan. 26, 2015) It looks like this 2-month-old Husky puppy and the family ferret are going to be the best of friends. Look at how much fun they&apos;re having together! Credit to &apos;Vira&apos;. Video provided by Rumble
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins