Featured Research

from universities, journals, and other organizations

Mosquito gene examined for new disease response

Date:
October 2, 2010
Source:
Iowa State University
Summary:
Researchers have searched for new genes that are turned on during infection in a type of mosquito that is not only a pest, but transmits disease-causing pathogens.

"What we're trying to do is broaden our understanding of infection response genes beyond those that we expect to be there," says Lyric Bartholomay, assistant professor of entomology at Iowa State University.
Credit: ISU photo by Bob Elbert

An Iowa State University researcher searched for new genes that are turned on during infection in a type of mosquito that is not only a pest, but transmits disease-causing pathogens.

Related Articles


Lyric Bartholomay, assistant professor of entomology, along with colleagues from around the world, infected the common southern house mosquito (Culex quinquefasciatus) with various pathogens to see which mosquito genes are activated in response to the infection.

Bartholomay is the first author on the paper, "Pathogenomics of Culex quinquefasciatus and Meta-Analysis of Infection Responses to Diverse Pathogens," to be published in the Oct. 1 issue of the journal Science.

The southern house mosquito is the third of the three most important mosquito disease carriers to have its genome sequenced. The first was an African mosquito (Anopheles gambiae) that transmits malaria parasites. Malaria infects 250 to 500 million people each year and kills nearly one million people annually, mostly young children in sub-Saharan Africa. The second was a tropical mosquito (Aedes aegypti) that carries yellow and dengue fever viruses.

The southern house mosquito is common to many areas of the United States and around the world. It feeds on blood from birds, livestock and humans, and transmits a wide variety of deadly and debilitating human and veterinary pathogens. In addition to transmitting the West Nile virus, the mosquito can carry the St. Louis encephalitis and the microscopic roundworm that causes lymphatic filariasis -- a debilitating tropical disease that affects up to 40 million people every year.

Bartholomay participated in cataloging the infection-response genes for Aedes aegypti in a manuscript published in 2007. She was chosen to be first author of the current Science paper because she has experience describing the immune responses in the northern house mosquito (Culex pipiens).

In the research, mosquitoes were infected with viruses, worms and bacteria. The genes of the mosquitoes were monitored to see which changed during the response to infection and therefore could ward off disease.

"What we're trying to do is broaden our understanding of infection response genes beyond those that we expect to be there," said Bartholomay.

"We took a two-pronged approach to understanding infection responses," she added. "First, we scoured the genome sequence looking for those immunity genes that the mosquitoes can use to respond to an infection. Then, we looked at what genes comprise broad spectrum and specific immune responses.

"We then took it one step further and compared the infection responses in Culex quinquefasciatus to similar infections in Aedes aegypti and Anopheles gambiae."

Bartholomay noted that the functions of many of the genes revealed in this analysis are still unknown, but as more is discovered about the functions of the genes, it could provide the first steps to controlling mosquito-borne diseases.

Bartholomay also worked with colleagues to analyze the mosquito's genome, as reported in a companion paper that will also be published in the current issue of Science.


Story Source:

The above story is based on materials provided by Iowa State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. C. Bartholomay, R. M. Waterhouse, G. F. Mayhew, C. L. Campbell, K. Michel, Z. Zou, J. L. Ramirez, S. Das, K. Alvarez, P. Arensburger, B. Bryant, S. B. Chapman, Y. Dong, S. M. Erickson, S. H. P. P. Karunaratne, V. Kokoza, C. D. Kodira, P. Pignatelli, S. W. Shin, D. L. Vanlandingham, P. W. Atkinson, B. Birren, G. K. Christophides, R. J. Clem, J. Hemingway, S. Higgs, K. Megy, H. Ranson, E. M. Zdobnov, A. S. Raikhel, B. M. Christensen, G. Dimopoulos, M. A. T. Muskavitch. Pathogenomics of Culex quinquefasciatus and Meta-Analysis of Infection Responses to Diverse Pathogens. Science, 2010; 330 (6000): 88 DOI: 10.1126/science.1193162

Cite This Page:

Iowa State University. "Mosquito gene examined for new disease response." ScienceDaily. ScienceDaily, 2 October 2010. <www.sciencedaily.com/releases/2010/09/100930171428.htm>.
Iowa State University. (2010, October 2). Mosquito gene examined for new disease response. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2010/09/100930171428.htm
Iowa State University. "Mosquito gene examined for new disease response." ScienceDaily. www.sciencedaily.com/releases/2010/09/100930171428.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins