Featured Research

from universities, journals, and other organizations

Antibody locks up West Nile's infection mechanism

Date:
November 2, 2010
Source:
Purdue University
Summary:
Researchers have learned the structure that results when an antibody binds to the West Nile virus, neutralizing the virus by locking up its infection mechanism. The information could help scientists develop a vaccine against the mosquito-borne disease.

Researchers have learned the structure that results when an antibody binds to the West Nile virus, neutralizing the virus by locking up its infection mechanism. The information could help scientists develop a vaccine against the mosquito-borne disease.

Related Articles


The findings show precisely how a key part of the antibody, called the antigen binding fragment, or Fab, attaches to two adjacent protein molecules that make up the virus's outer shell. This "crosslinking" attachment between molecules is repeated over the entire shell, interlocking the 30 molecular "rafts" that make up the shell and preventing structural changes needed for the virus to infect host cells, said Michael Rossmann, the Hanley Distinguished Professor of Biological Sciences in Purdue's College of Science.

"The antibody crosslinking causes the virus to become rigid, and this rigidity prevents conformational changes to the virus needed to fuse with host cells," Rossmann said.

Findings are detailed in a research paper that appeared in October in Proceedings of the National Academy of Sciences. The team included postdoctoral researcher Bไrbel Kaufmann, other researchers at Purdue, the Washington University School of Medicine in St. Louis and the biotechnology company Crucell Holland B.V. in The Netherlands.

Learning how antibodies neutralize viruses is important for developing effective vaccines, Rossmann said.

"There are many antibodies that can neutralize West Nile virus," he said. "These findings concern a specific antibody, called CR4354. It uses an unusual approach to neutralize the virus. Normally an antibody binds to a single molecule, but now we see this crosslinking, which is quite clever because it ties everything rigidly together."

The researchers used a process called cryoelectron microscopy to take detailed pictures of the Fab-virus complex. They also used X-ray crystallography to learn the antibody's precise crystalline structure.

West Nile belongs to a family of viruses known as flaviviruses, which includes a number of dangerous insect-borne disease-causing viruses. West Nile virus causes a potentially fatal illness and has infected thousands of people in the United States over the past five years, killing more than 400 people in that time frame, according to the Centers for Disease Control and Prevention. The virus is endemic in parts of Africa, Asia and Europe and in the past decade has spread throughout North America and into Central and South America.

The research is funded by the National Institutes of Health.

The paper was written by Kaufmann; doctoral student Matthew R. Vogt at the Washington University School of Medicine; Jaap Goudsmit, chief scientific officer at Crucell Holland; electron microscopist Heather A. Holdaway; Purdue postdoctoral researcher Anastasia A. Aksyuka; Paul R. Chipman, director of Purdue's structural biology electron microscopy facility; Richard Kuhn, professor and head of Purdue's Department of Biological Sciences; Michael S. Diamond, professor in the departments of Medicine, Molecular Microbiology, Pathology and Immunology at Washington University School of Medicine; and Rossmann.


Story Source:

The above story is based on materials provided by Purdue University. The original article was written by Emil Venere. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. Kaufmann, M. R. Vogt, J. Goudsmit, H. A. Holdaway, A. A. Aksyuk, P. R. Chipman, R. J. Kuhn, M. S. Diamond, M. G. Rossmann. Neutralization of West Nile virus by cross-linking of its surface proteins with Fab fragments of the human monoclonal antibody CR4354. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.1011036107

Cite This Page:

Purdue University. "Antibody locks up West Nile's infection mechanism." ScienceDaily. ScienceDaily, 2 November 2010. <www.sciencedaily.com/releases/2010/11/101102130955.htm>.
Purdue University. (2010, November 2). Antibody locks up West Nile's infection mechanism. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2010/11/101102130955.htm
Purdue University. "Antibody locks up West Nile's infection mechanism." ScienceDaily. www.sciencedaily.com/releases/2010/11/101102130955.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) — Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) — The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) — A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins