Featured Research

from universities, journals, and other organizations

Cancer drug target is promising lead for new TB treatments

Date:
November 17, 2010
Source:
Society for General Microbiology
Summary:
A key enzyme in Mycobacterium tuberculosis that enables the microbe to reproduce rapidly could be a golden target for new drugs against tuberculosis, according to a new study. The human equivalent of this enzyme has been targeted in some cancer treatments as well as in immunosuppressive chemotherapies. Scientists have now shown that inhibiting the same enzyme in M. tuberculosis effectively kills the bacterial cells.

A key enzyme in Mycobacterium tuberculosis that enables the microbe to reproduce rapidly could be a golden target for new drugs against tuberculosis (TB), according to a study published in Microbiology on 17 November.

The human equivalent of this enzyme has been targeted in some cancer treatments as well as in immunosuppressive chemotherapies. Scientists at the University of Birmingham have now shown that inhibiting the same enzyme in M. tuberculosis effectively kills the bacterial cells.

The enzyme called IMPDH is crucial for the survival of both human and bacterial cells. It is involved in the first stage of producing guanine nucleotides -the raw materials needed for DNA synthesis -- as well as many other housekeeping processes that keep the cell alive and functioning.

The researchers identified the three genes in M. tuberculosis that encode IMPDH and then screened a library of 16 compounds that were likely to impede its function to some extent. Of the 16 diphenyl urea (DPU) compounds, 3 were able to inhibit IMPDH by more than 90%, killing M. tuberculosis cells.

Project leader Professor Gurdyal Besra explained why IMPDH is a promising target to tackle TB. "IMPDH is essential for cells to proliferate rapidly, which is one of the characteristics of microbial infection as well as human cancers. IMPDH has been used as a target in some anti-cancer drugs, as blocking the enzyme can prevent proliferation of the cell and induce cell death. Our findings show that inhibiting the bacterial version of IMPDH is a strategy that could be exploited for anti-TB drugs," he said. "The DPU compounds we tested have selective activity against Mycobacterium species, meaning that any future drugs based on these would be specific and would not affect human cells."

9 million people are newly diagnosed with TB each year with increasing incidences of multi-drug resistant (MDR)-TB and extensively drug resistant (XDR)-TB. "In the face of growing resistance to current therapies, we desperately need new treatments for TB that are safe and effective," stressed Professor Besra. "We are tapping the potential of a so far unexploited target which could lead to the synthesis of a novel anti-tubercular drug and our findings, so far are extremely encouraging," he said.


Story Source:

The above story is based on materials provided by Society for General Microbiology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Veeraraghavan Usha, Sudagar S Gurcha, Andrew Lovering, Adrian J Lloyd, Athina Papaemmanouil, Robert C Reynolds and Gurdyal S Besra. Identification of novel diphenyl urea inhibitors of Mt-Guab2 active against Mycobacterium tuberculosis. Microbiology, 16 November 2010 DOI: 10.1099/mic.0.042549-0

Cite This Page:

Society for General Microbiology. "Cancer drug target is promising lead for new TB treatments." ScienceDaily. ScienceDaily, 17 November 2010. <www.sciencedaily.com/releases/2010/11/101116203436.htm>.
Society for General Microbiology. (2010, November 17). Cancer drug target is promising lead for new TB treatments. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2010/11/101116203436.htm
Society for General Microbiology. "Cancer drug target is promising lead for new TB treatments." ScienceDaily. www.sciencedaily.com/releases/2010/11/101116203436.htm (accessed September 1, 2014).

Share This




More Health & Medicine News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

Reuters - US Online Video (Aug. 30, 2014) California lawmakers pass a bill requiring universities to adopt "affirmative consent" language in their definitions of consensual sex, part of a nationwide drive to curb sexual assault on campuses. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
New Drug Could Reduce Cardiovascular Deaths

New Drug Could Reduce Cardiovascular Deaths

Newsy (Aug. 30, 2014) The new drug from Novartis could reduce cardiovascular deaths by 20 percent compared to other similar drugs. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins