Featured Research

from universities, journals, and other organizations

'Green' water treatments may not kill bacteria in large building cooling systems

Date:
December 12, 2010
Source:
University of Pittsburgh
Summary:
Non-chemical water treatment systems -- touted as environmentally conscious stand-ins for such chemicals as chlorine -- may allow dangerous bacteria to flourish in the cooling systems of hospitals, commercial offices and other water-cooled buildings. The study is the first to thoroughly investigate the ability of nonchemical treatment devices to control the growth of bacteria in water-based air-conditioning systems found in many large buildings.

The model cooling tower treated with the pulsed electric-field device showed no significant difference in bacteria population than the nontreated tower. After a chlorine treatment was administered, the microbial populations in both model cooling towers fell by four orders of magnitude within three days.
Credit: Image courtesy of University of Pittsburgh

Nonchemical treatment systems are touted as environmentally conscious stand-ins for such chemicals as chlorine when it comes to cleaning the water-based air-conditioning systems found in many large buildings. But a recent study by University of Pittsburgh researchers suggests that this diverse class of water-treatment devices may be ineffective and can allow dangerous bacteria to flourish in the cooling systems of hospitals, commercial offices, and other water-cooled buildings almost as much as they do in untreated water.

Related Articles


The two-year study by a team in Pitt's Swanson School of Engineering is the first to thoroughly investigate the ability of nonchemical treatment devices (NCDs) to control the growth of bacteria in water-based cooling systems. Of the five NCDs tested, none significantly prevented bacterial growth. On the other hand, the researchers found that standard chlorine treatment controlled these organisms, even after bacteria had been allowed to proliferate.

"Our results suggest that equipment operators, building owners, and engineers should monitor systems that rely on NCDs to control microorganisms," saidcoinvestigator Janet Stout, a research associate in the Swanson School's Department of Civil and Environmental Engineering and director of the Pittsburgh-based Special Pathogens Laboratory. Stout worked with fellow lead investigator Radisav Vidic, chair and William Kepler Whiteford Professor of civil and environmental engineering, and Pitt civil engineering graduate student Scott Duda.

"These cooling systems are energy efficient and, if properly treated, very safe," Stout continued. "But based on our results, nonchemical devices alone may not be enough to control microbial growth. One possible measure is to add chemical treatment as needed to prevent a potential health hazard."

The air systems the team investigated work by piping chilled water throughout a building. The water warms as it exchanges temperature with the surrounding air and becomes a hotbed of microorganisms before returning to a central cooling tower to be cleaned and re-chilled.

If the returning water is not thoroughly cleaned, bacteria can spread throughout the system, exposing people within the building to possible infection and hampering the system's energy efficiency.

The team constructed two scale models of typical cooling towers. One model remained untreated while the other was treated with five commercially available NCDs installed according to the manufacturers' guidelines. Each device was tested for four weeks. Chlorine was administered three times during the study to demonstrate that an industry-accepted chemical treatment could kill bacteria even in a heavily contaminated system.

The five devices tested represent different classes of NCDs, Vidic said. Pulsed electric-field devices emit electromagnetic energy that, in theory, ruptures bacterial membranes and activates particles that ensnare the bacterium. Electrostatic devices function similarly by producing a constant static field.

Ultrasonic devices pass a mixture of untreated water and high-pressure air through a chamber that purportedly disintegrates the bacterium with sound waves.

For hydrodynamic cavitation devices, two cone-shaped water streams collide to form a vacuum region filled with high-friction bubbles that collide with and presumably deactivate the bacteria. Finally, the team tested a magnetic device, although magnetic NCDs are intended to prevent mineral buildup, not control bacterial growth.

The study was funded by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers.


Story Source:

The above story is based on materials provided by University of Pittsburgh. Note: Materials may be edited for content and length.


Cite This Page:

University of Pittsburgh. "'Green' water treatments may not kill bacteria in large building cooling systems." ScienceDaily. ScienceDaily, 12 December 2010. <www.sciencedaily.com/releases/2010/12/101210154530.htm>.
University of Pittsburgh. (2010, December 12). 'Green' water treatments may not kill bacteria in large building cooling systems. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2010/12/101210154530.htm
University of Pittsburgh. "'Green' water treatments may not kill bacteria in large building cooling systems." ScienceDaily. www.sciencedaily.com/releases/2010/12/101210154530.htm (accessed October 24, 2014).

Share This



More Earth & Climate News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins