Featured Research

from universities, journals, and other organizations

Wild salmon decline was not caused by sea lice from farm salmon, new research suggests

Date:
January 18, 2011
Source:
University of California - Davis
Summary:
A new study contradicts earlier reports that salmon farms were responsible for the 2002 population crash of wild pink salmon in the Broughton Archipelago of western Canada.

Atlantic salmon on a fish farm in British Columbia, Canada.
Credit: Marine Harvest Canada

A new UC Davis study contradicts earlier reports that salmon farms were responsible for the 2002 population crash of wild pink salmon in the Broughton Archipelago of western Canada.

Related Articles


The Broughton crash has become a rallying event for people concerned about the potential environmental effects of open-net salmon farming, which has become a $10 billion industry worldwide, producing nearly 1.5 million tons of fish annually.

The new study, to be published online this week in Proceedings of the National Academy of Sciences, does not determine what caused the crash, but it acquits the prime suspect: small skin parasites called sea lice.

The study's lead author is Gary Marty, a veterinary pathologist and research associate at the UC Davis School of Veterinary Medicine. An expert in fish diseases, Marty has been studying the health of pink salmon since the 1989 Exxon Valdez oil spill in Alaska.

"For anybody concerned about the effect of farm salmon on wild salmon, this is good news," Marty said. "Sea lice from fish farms have no significant effect on wild salmon population productivity."

The new study is the first to analyze 20 years of fish production data and 10 years of sea-lice counts from every salmon farm in the Broughton Archipelago and compare them against 60 years of population counts of adult pink salmon.

The study concludes that farm fish are indeed the main source of sea lice on the area's juvenile wild pink salmon, but it found no statistical correlation between lice levels on the farms and the lifetime survival of wild pink salmon populations.

Pink salmon (Oncorhynchus gorbuscha) are the most abundant wild salmon species in the Broughton Archipelago. When they are a few months old, juvenile pink salmon leave the streams where they were born. They mature at sea, then return to their native streams to spawn and die two years after their parents.

Because of their two-year lifespans, the pink salmon born in odd-numbered years are genetically different from those born in even-numbered years. In the 60-year record, both lines of pink salmon have had tremendous, unexplained population swings, even before fish farms were established in the late 1980s.

Sea lice are natural parasites of adult pink salmon. The adult louse, about the size of a small watermelon seed, attaches itself to a fish's skin and feeds on its host. Minor lice infestations are not harmful to pink salmon, but a severe infestation can weaken or kill the smallest fish (those about the size of a paperclip). On fish farms, veterinarians treat the fish with medicated feed when lice populations become too high.

The Broughton fish farms raise Atlantic salmon (Salmo salar) in net-sided pens in the water. Wild pink salmon are separated from the farm fish only by the mesh of the net enclosures. Lice freely pass from wild fish to farm fish, and vice-versa.

Record high numbers of wild pink salmon returned to spawn in rivers of the Broughton Archipelago in 2000 and 2001, but only 3 percent of that number returned in 2002, and only 12 percent in 2003.

Also, in 2001, the first examination of Broughton juvenile pink salmon found that more than 90 percent had lice. In the next two years, when the salmon numbers plummeted, the hypothesis arose that sea lice from fish farms were to blame.

Calls went up for the farms to move the fish from open-net pens to closed containers. And government regulators ordered farmers to use stricter anti-lice treatments.

In the new study, Marty and his colleagues were able to see, year by year, how many lice were on the farms when the young pink salmon went to sea, and how many of those salmon returned to spawn. The results were surprising.

"The salmon that returned in such low numbers in 2002 were exposed as juveniles to fewer sea lice than were the salmon that returned in record high numbers in 2001," Marty said. "Sea lice from farm fish could not have caused the 2002 wild salmon population crash."

Marty's co-authors are Sonja Saksida, director of the British Columbia Centre for Aquatic Health Sciences in Campbell River, and Terrance Quinn, professor of fish population dynamics at the Juneau Center of the School of Fisheries and Ocean Sciences at the University of Alaska Fairbanks. Quinn is a world authority on mathematical modeling of fish populations. Saksida is a veterinarian and the first researcher given access to confidential records from all the Broughton aquaculture companies.

Marty is also the fish pathologist for the British Columbia Ministry of Agriculture and an affiliate faculty member of the University of Alaska School of Fisheries and Ocean Sciences.

Marty said that even though the trio used much of the same fish and lice data used in previous studies, they reached a different conclusion for two reasons: First, the fish farmers gave Saksida their records, and second, the old and new data were analyzed using methods common in veterinary medical science that were not used in many of the previous studies.

"The major lesson of this study is that we cannot settle for simple explanations for wild-animal population declines. There are very complex interactions among disease, environment and animal population health. Sustainability studies must engage all the science specialties to pursue a better understanding of these relationships," Marty said.


Story Source:

The above story is based on materials provided by University of California - Davis. Note: Materials may be edited for content and length.


Journal Reference:

  1. G. D. Marty, S. M. Saksida, T. J. Quinn. Relationship of farm salmon, sea lice, and wild salmon populations. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.1009573108

Cite This Page:

University of California - Davis. "Wild salmon decline was not caused by sea lice from farm salmon, new research suggests." ScienceDaily. ScienceDaily, 18 January 2011. <www.sciencedaily.com/releases/2010/12/101213151411.htm>.
University of California - Davis. (2011, January 18). Wild salmon decline was not caused by sea lice from farm salmon, new research suggests. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2010/12/101213151411.htm
University of California - Davis. "Wild salmon decline was not caused by sea lice from farm salmon, new research suggests." ScienceDaily. www.sciencedaily.com/releases/2010/12/101213151411.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins