Featured Research

from universities, journals, and other organizations

Dynamic systems in living cells break the rules

Date:
January 25, 2011
Source:
University of Copenhagen
Summary:
There is considerable interest in understanding transport and information pathways in living cells. It is crucial for both the transport of, for example, medicine into cells, the regulation of cell life processes and their signaling with their environment. New research shows surprisingly that the transport mechanisms do not follow the expected pattern.

There is considerable interest in understanding transport and information pathways in living cells. It is crucial for both the transport of, for example, medicine into cells, the regulation of cell life processes and their signalling with their environment. New research in biophysics at the Niels Bohr Institute shows surprisingly that the transport mechanisms do not follow the expected pattern. The results have been published in the scientific journal Physical Review Letters.

The researchers studied fat molecules which are naturally occurring in cells. Using a special state-of-the-art instrument, an optical tweezer, they were able to hold onto the small fat molecules inside living yeast cells using an extremely focused laser light. By measuring the movement of the fat molecules over several hours they could observe that they were not behaving as expected.

The laws of physics for motion

In the world of physics, there is something called Brownian motion. Ordinary Brownian motion describes how a substance passively spreads in a liquid. For example, when you pour a spoonful of sugar into a glass of water the sugar will distribute itself evenly after a while. Would fat molecules behave 'ordinarily' and simple distribute itself evenly in the cell fluid?

In any case, the researchers had expected that the Ergodicity theorem (tenet), which is a generally recognized law of nature, would be adhered to. The Ergodicity theorem predicts that statistically, the result of throwing 10 dice once would have the same average distribution as throwing one die 10 times.

The Ergodicity theorem is expected to apply for anomalous transport processes in unorganized materials, for example, biological systems. The researchers expected therefore, that if you observe the transport of fat molecules in many cells at once, then you would get the same result as by looking a single cell repeatedly over a long period of time. You expect a pattern.

Breaks common wisdom

"But neither the one nor the other common wisdom held true. It turned out the fat molecules broke with all the patterns. Our analysis of the spreading of liquid fat granules in living yeast cells showed that not only was the distribution abnormal, but that the movement in the relevant time period was also in conflict with the statistics for ergodicity. They almost have their own will," explains Lene Oddershede, associate professor in the biophysics group, Optical Tweezers at the Niels Bohr Institute at the University of Copenhagen. The experimental studies were performed here, while researchers from DTU as well as Germany and Israel have worked with the theoretical calculations.

The conclusion is that controlling living systems is more complicated than previously thought and that the basic concepts in statistical physics must be replaced when analysing certain aspects of biomolecular dynamics in cells.

"We have gained very important knowledge. What we thought would apply, did not hold up at all, so now we need to find a completely new law for the physics in living organisms. Our goal is to discover how the cell signals and how it communicates both internally and with its environment," explains Lene Oddershede.


Story Source:

The above story is based on materials provided by University of Copenhagen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jae-Hyung Jeon, Vincent Tejedor, Stas Burov, Eli Barkai, Christine Selhuber-Unkel, Kirstine Berg-Sψrensen, Lene Oddershede, Ralf Metzler. In Vivo Anomalous Diffusion and Weak Ergodicity Breaking of Lipid Granules. Physical Review Letters, 2011; 106 (4) DOI: 10.1103/PhysRevLett.106.048103

Cite This Page:

University of Copenhagen. "Dynamic systems in living cells break the rules." ScienceDaily. ScienceDaily, 25 January 2011. <www.sciencedaily.com/releases/2011/01/110125160847.htm>.
University of Copenhagen. (2011, January 25). Dynamic systems in living cells break the rules. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2011/01/110125160847.htm
University of Copenhagen. "Dynamic systems in living cells break the rules." ScienceDaily. www.sciencedaily.com/releases/2011/01/110125160847.htm (accessed September 20, 2014).

Share This



More Health & Medicine News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) — The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) — A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com
How The 'Angelina Jolie Effect' Increased Cancer Screenings

How The 'Angelina Jolie Effect' Increased Cancer Screenings

Newsy (Sep. 19, 2014) — Angelina's Jolie's decision to undergo a preventative mastectomy in 2013 inspired many women to seek early screenings for the disease. Video provided by Newsy
Powered by NewsLook.com
The Cost of Ebola

The Cost of Ebola

Reuters - Business Video Online (Sep. 18, 2014) — As Sierra Leone prepares for a three-day "lockdown" in its latest bid to stem the spread of Ebola, Ciara Lee looks at the financial implications of fighting the largest ever outbreak of the disease. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins