Featured Research

from universities, journals, and other organizations

Different evolutionary paths lead plants and animals to the same crossroads

Date:
February 7, 2011
Source:
Salk Institute
Summary:
In analyzing the molecular sensor for the plant growth hormone brassinolide, researchers discovered that although plants took an evolutionary path different from their animal cousins, they arrived at similar solutions to a common problem: How to reliably receive and process incoming signals.

Despite their divergent evolutionary history, membrane-bound kinase receptors in animals and plants rely on similar regulatory mechanisms to control their activity.
Credit: Courtesy of Yvon Jaillard, Michael Hothorn and Jamie Simon, Salk Institute for Biological Studies

In analyzing the molecular sensor for the plant growth hormone brassinolide, researchers at the Salk Institute for Biological Studies discovered that although plants took an evolutionary path different from their animal cousins, they arrived at similar solutions to a common problem: How to reliably receive and process incoming signals.

Related Articles


The team's findings, published in the February 1, 2011 issue of Genes and Development, revealed that so-called tyrosine phosphorylation -- used as an "on" or "off" switch and long thought to be a feature unique to animal cells -- is a mechanism conserved across the animal and plant kingdoms.

"There seem to be only so many ways to build a robust signaling system," says Howard Hughes Medical Institute investigator Joanne Chory, Ph.D., professor and director of the Plant Molecular and Cellular Biology Laboratory and holder of the Howard H. and Maryam R. Newman Chair, "and plants and animals have hit upon the same mechanisms."

As different as they may seem, both mammalian and plant cells need to be able to perceive small molecule hormones to respond to changes in the environment. While human cells draw on a wide variety of sensor molecules, including more than 800 different G-protein-coupled receptors, 48 known nuclear hormone receptors and 72 receptor kinases, plants rely mostly on the latter.

"This group of receptors is by far the largest one in plants," says postdoctoral researcher and co-first author Michael Hothorn, "but we don't know much about the activation mechanism apart from 'there's a bunch of new phosphorylations.'"

Kinases transfer phosphate groups to proteins and come in two principal flavors: They either attach the phosphate group to the amino acid tyrosine within the protein or to serine or threonine. The vast majority of receptor kinases in animals possess tyrosine kinase activity, while only a few are specific for serine-threonine.

With the exception of a small handful of dual-specificity kinases, all plant receptor kinases have been pegged as serine-threonine kinases. One of few known outliers is the receptor for brassinolide, a key element of plants' response to light. "Binding of brassinolide to its receptor allows plants to adjust growth when they need to outcompete their neighbors to reach more light or water," explains postdoctoral researcher and co-first author Yvon Jaillais. "But at the same time the receptor needs to be tightly regulated so plants don't waste their resources when they don't have to."

The brassinolide receptor BRI1 is kept in a relatively inactive state by its intracellular tail and a small inhibitory protein known as BKI1. Based on earlier studies in Chory's lab, the Salk researchers knew that autophosphorylation of the receptor was necessary, but what triggered the release of the inhibitory protein remained unclear.

In an effort to understand the activation mechanism, the Salk researchers discovered that BKI1 acts through two evolutionarily conserved motifs: a 20-amino- acid sequence that binds the receptor kinase domain and a lysine-arginine-rich motif that anchors the inhibitory peptide to the plasma membrane. Phosphorylation of a key tyrosine within the membrane-targeting motif releases BKI1 from the membrane, relieving kinase inhibition and allowing the formation of an active signaling complex.

The phosphorylation of BKI1 is not only the first documented example of tyrosine transphosphorylation in plants, the underlying principle also closely resembles the mechanism used by bona fide receptor tyrosine kinases to regulate their activity. "Plant and animal receptor kinases evolved independently, yet their activation relies on similar mechanisms," says Chory.

By defining common features in plant and animal receptor signaling pathways, the Salk researchers hope to learn more about what the requirements for a robust signaling system are. Although plants don't encode canonical tyrosine kinases in their genomes, tyrosine phosphorylation will emerge as an important topic in plant signaling, predicts Hothorn.

Researchers who also contributed to the work include Yousseff Belkhadir and Tsegaye Dabi in the Plant Biology Laboratory at the Salk Institute, as well as Zachary L. Nimchuk and Elliot Meyerowitz in the Division of Biology at the California Institute of Technology in Pasadena, California.

The work was funded in part by the Howard Hughes Medical Institute, the National Institutes of Health, the National Science Foundation, the European Molecular Biology Organization, the International Human Frontier Science Program Organization, the Life Sciences Research Foundation, and the Marc and Eva Stern Foundation.


Story Source:

The above story is based on materials provided by Salk Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Y. Jaillais, M. Hothorn, Y. Belkhadir, T. Dabi, Z. L. Nimchuk, E. M. Meyerowitz, J. Chory. Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor. Genes & Development, 2011; 25 (3): 232 DOI: 10.1101/gad.2001911

Cite This Page:

Salk Institute. "Different evolutionary paths lead plants and animals to the same crossroads." ScienceDaily. ScienceDaily, 7 February 2011. <www.sciencedaily.com/releases/2011/01/110131172111.htm>.
Salk Institute. (2011, February 7). Different evolutionary paths lead plants and animals to the same crossroads. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2011/01/110131172111.htm
Salk Institute. "Different evolutionary paths lead plants and animals to the same crossroads." ScienceDaily. www.sciencedaily.com/releases/2011/01/110131172111.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins