Featured Research

from universities, journals, and other organizations

Not so fast: Differences in the first embryonic cell lineage decision of mammals

Date:
February 14, 2011
Source:
Cell Press
Summary:
New research shows that all not mammals are created equal. In fact, this work shows that the animals most commonly used by scientists to study mammalian genetics -- mice -- develop unusually quickly and may not always be representative of embryonic development in other mammals. The study identifies significant differences in the timing of cell fate commitment during mouse and cattle embryonic development and raises important strategic implications for the generation of embryonic stem cells.

New research shows that all not mammals are created equal. In fact, this work shows that the animals most commonly used by scientists to study mammalian genetics -- mice -- develop unusually quickly and may not always be representative of embryonic development in other mammals. The study, published in the February 14 issue of the journal Developmental Cell, identifies significant differences in the timing of cell fate commitment during mouse and cattle embryonic development and raises important strategic implications for the generation of embryonic stem cells.

The placenta in mammals is formed from cells called trophectoderm that arise from the very first lineage decision made by the early embryo. Most trophectoderm research is performed on mice, as other mammals tend to be much harder to work with in a lab. In the mouse, the fate of trophoectoderm cells is sealed (committed) by the mid-blastocyst stage. This fate commitment is driven in part by repression of the stem cell factor Oct4.

"We were intrigued by previous observations that in mammals such as humans, cattle, pigs and rabbits Oct4 protein was not shut down in the trophoectoderm of late blastocyst embryos," explains senior author Dr. Peter L. Pfeffer from AgResearch Crown Research Institute in Hamilton, New Zealand. Using cattle as a non-rodent model system, Dr. Pfeffer and colleagues discovered that cattle trophoectoderm cells were committed to their fate much later than mouse cells, with Oct4 expression levels remaining strong for longer than in mice. In fact the authors identified the specific evolutionary changes in mouse DNA that make Oct4 behave differently in mice than in other mammals.

"Somewhat ironically, our studies in cattle led to new insight into Oct4 regulation in the mouse," explains Dr Pfeffer. "Such evolutionary differences in the regulation of the key stem cell gene Oct4 may explain the difficulty in embryonic stem cell derivation in mammals other than the mouse." Based on the fact that mouse embryos implant in the uterus at an earlier developmental stage than other mammals do, and therefore require earlier trophectoderm formation, the authors also speculate that the unusually rapid repression of Oct4 in mouse trophectoderm represented a key evolutionary step enabling early implantation.

"Establishing cattle as a second functional mammalian embryological model system challenges notions that mice are representative of either the earliest stages of mammalian development or of embryonic stem cell biology," concludes Dr. Pfeffer.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Debra K. Berg, Craig S. Smith, David J. Pearton, David N. Wells, Ric Broadhurst, Martyn Donnison, Peter L. Pfeffer. Trophectoderm Lineage Determination in Cattle. Developmental Cell, Volume 20, Issue 2, 244-255, 15 February 2011 DOI: 10.1016/j.devcel.2011.01.003

Cite This Page:

Cell Press. "Not so fast: Differences in the first embryonic cell lineage decision of mammals." ScienceDaily. ScienceDaily, 14 February 2011. <www.sciencedaily.com/releases/2011/02/110214122635.htm>.
Cell Press. (2011, February 14). Not so fast: Differences in the first embryonic cell lineage decision of mammals. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2011/02/110214122635.htm
Cell Press. "Not so fast: Differences in the first embryonic cell lineage decision of mammals." ScienceDaily. www.sciencedaily.com/releases/2011/02/110214122635.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) — West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) — Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) — The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) — A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins