Featured Research

from universities, journals, and other organizations

Not so fast: Differences in the first embryonic cell lineage decision of mammals

Date:
February 14, 2011
Source:
Cell Press
Summary:
New research shows that all not mammals are created equal. In fact, this work shows that the animals most commonly used by scientists to study mammalian genetics -- mice -- develop unusually quickly and may not always be representative of embryonic development in other mammals. The study identifies significant differences in the timing of cell fate commitment during mouse and cattle embryonic development and raises important strategic implications for the generation of embryonic stem cells.

New research shows that all not mammals are created equal. In fact, this work shows that the animals most commonly used by scientists to study mammalian genetics -- mice -- develop unusually quickly and may not always be representative of embryonic development in other mammals. The study, published in the February 14 issue of the journal Developmental Cell, identifies significant differences in the timing of cell fate commitment during mouse and cattle embryonic development and raises important strategic implications for the generation of embryonic stem cells.

The placenta in mammals is formed from cells called trophectoderm that arise from the very first lineage decision made by the early embryo. Most trophectoderm research is performed on mice, as other mammals tend to be much harder to work with in a lab. In the mouse, the fate of trophoectoderm cells is sealed (committed) by the mid-blastocyst stage. This fate commitment is driven in part by repression of the stem cell factor Oct4.

"We were intrigued by previous observations that in mammals such as humans, cattle, pigs and rabbits Oct4 protein was not shut down in the trophoectoderm of late blastocyst embryos," explains senior author Dr. Peter L. Pfeffer from AgResearch Crown Research Institute in Hamilton, New Zealand. Using cattle as a non-rodent model system, Dr. Pfeffer and colleagues discovered that cattle trophoectoderm cells were committed to their fate much later than mouse cells, with Oct4 expression levels remaining strong for longer than in mice. In fact the authors identified the specific evolutionary changes in mouse DNA that make Oct4 behave differently in mice than in other mammals.

"Somewhat ironically, our studies in cattle led to new insight into Oct4 regulation in the mouse," explains Dr Pfeffer. "Such evolutionary differences in the regulation of the key stem cell gene Oct4 may explain the difficulty in embryonic stem cell derivation in mammals other than the mouse." Based on the fact that mouse embryos implant in the uterus at an earlier developmental stage than other mammals do, and therefore require earlier trophectoderm formation, the authors also speculate that the unusually rapid repression of Oct4 in mouse trophectoderm represented a key evolutionary step enabling early implantation.

"Establishing cattle as a second functional mammalian embryological model system challenges notions that mice are representative of either the earliest stages of mammalian development or of embryonic stem cell biology," concludes Dr. Pfeffer.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Debra K. Berg, Craig S. Smith, David J. Pearton, David N. Wells, Ric Broadhurst, Martyn Donnison, Peter L. Pfeffer. Trophectoderm Lineage Determination in Cattle. Developmental Cell, Volume 20, Issue 2, 244-255, 15 February 2011 DOI: 10.1016/j.devcel.2011.01.003

Cite This Page:

Cell Press. "Not so fast: Differences in the first embryonic cell lineage decision of mammals." ScienceDaily. ScienceDaily, 14 February 2011. <www.sciencedaily.com/releases/2011/02/110214122635.htm>.
Cell Press. (2011, February 14). Not so fast: Differences in the first embryonic cell lineage decision of mammals. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2011/02/110214122635.htm
Cell Press. "Not so fast: Differences in the first embryonic cell lineage decision of mammals." ScienceDaily. www.sciencedaily.com/releases/2011/02/110214122635.htm (accessed April 18, 2014).

Share This



More Plants & Animals News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) — Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com
Flamingo Frenzy Ahead of Zoo Construction

Flamingo Frenzy Ahead of Zoo Construction

AP (Apr. 17, 2014) — With plenty of honking, flapping, and fluttering, more than three dozen Caribbean flamingos at Zoo Miami were rounded up today as the iconic exhibit was closed for renovations. (April 17) Video provided by AP
Powered by NewsLook.com
Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) — Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) — A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins