Featured Research

from universities, journals, and other organizations

Shrinking tundra, advancing forests: how the Arctic will look by century's end

Date:
March 3, 2011
Source:
University of Nebraska-Lincoln
Summary:
A shifting of climate types in the Arctic will mean tundra in Alaska, Canada, Scandinavia and Asia giving way to trees and plants typical of more southerly climates, according to climatologists.

Imagine the vast, empty tundra in Alaska and Canada giving way to trees, shrubs and plants typical of more southerly climates. Imagine similar changes in large parts of Eastern Europe, northern Asia and Scandinavia, as needle-leaf and broadleaf forests push northward into areas once unable to support them. Imagine part of Greenland's ice cover, once thought permanent, receding and leaving new tundra in its wake.

Related Articles


Those changes are part of a reorganization of Arctic climates anticipated to occur by the end of the 21st century, as projected by a team of University of Nebraska-Lincoln and South Korean climatologists.

In an article to be published in a forthcoming issue of the scientific journal Climate Dynamics, the research team analyzed 16 global climate models from 1950 to 2099 and combined it with more than 100 years of observational data to evaluate what climate change might mean to the Arctic's sensitive ecosystems by the dawn of the 22nd century.

The study is one of the first to apply a specific climate classification system to a comprehensive examination of climate changes throughout the Arctic by using both observations and a collection of projected future climate changes, said Song Feng, research assistant professor in UNL's School of Natural Resources and the study's lead author.

Based on the climate projections, the new study shows that the areas of the Arctic now dominated by polar and sub-polar climate types will decline and will be replaced by more temperate climates -- changes that could affect a quarter to nearly half of the Arctic, depending on future greenhouse gas emission scenarios, by the year 2099.

Changes to Arctic vegetation will naturally follow shifts in the region's climates: Tundra coverage would shrink by 33 to 44 percent by the end of the century, while temperate climate types that support coniferous forests and needle-leaf trees would push northward into the breach, the study shows.

"The expansion of forest may amplify global warming, because the newly forested areas can reduce the surface reflectivity, thereby further warming the Arctic," Feng said. "The shrinkage of tundra and expansion of forest may also impact the habitat for wildlife and local residents."

Also according to the study:

  • By the end of the century, the annual average surface temperature in Arctic regions is projected to increase by 5.6 to 9.5 degrees Fahrenheit, depending on the greenhouse gas emission scenarios.
  • The warming, however, is not evenly distributed across the Arctic. The strongest warming in the winter (by 13 degrees Fahrenheit) will occur along the Arctic coast regions, with moderate warming (by 4 to 6 degrees Fahrenheit) along the North Atlantic rim.
  • The projected redistributions of climate types differ regionally; in northern Europe and Alaska, the warming may cause more rapid expansion of temperate climate types than in other places.
  • Tundra in Alaska and northern Canada would be reduced and replaced by boreal forests and shrubs by 2059. Within another 40 years, the tundra would be restricted to the northern coast and islands of the Arctic Ocean.
  • The melting of snow and ice in Greenland following the warming will reduce the permanent ice cover, giving its territory up to tundra.

"The response of vegetation usually lags changes in climate. The plants don't have legs, so it takes time for plant seed dispersal, germination and establishment of seedlings," Feng said. Still, the shrub density in tundra regions has seen a rapid increase on decadal and shorter time scales, while the boreal forest expansion has seen a much slower response on century time scales.

Also, increasing drought conditions may help offset any potential benefits of warmer temperatures and reduce the overall vegetation growth in the Arctic regions, Feng said.

Non-climate factors -- human activity, land use changes, permafrost thawing, pest outbreaks and wildfires, for example -- may also locally affect the response of vegetation to temperature warming in the Arctic.

In addition to Feng, researchers on the project included climatologists Qi Hu and Robert Oglesby of UNL; Su-Jong Jeong and Chang-Hoi Ho of the School of Earth and Environmental Sciences at Seoul National University; and Baek-Min Kim of the Korean Polar Research Institute in Incheon.


Story Source:

The above story is based on materials provided by University of Nebraska-Lincoln. Note: Materials may be edited for content and length.


Cite This Page:

University of Nebraska-Lincoln. "Shrinking tundra, advancing forests: how the Arctic will look by century's end." ScienceDaily. ScienceDaily, 3 March 2011. <www.sciencedaily.com/releases/2011/03/110303065219.htm>.
University of Nebraska-Lincoln. (2011, March 3). Shrinking tundra, advancing forests: how the Arctic will look by century's end. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2011/03/110303065219.htm
University of Nebraska-Lincoln. "Shrinking tundra, advancing forests: how the Arctic will look by century's end." ScienceDaily. www.sciencedaily.com/releases/2011/03/110303065219.htm (accessed October 24, 2014).

Share This



More Earth & Climate News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins