Featured Research

from universities, journals, and other organizations

Deforestation's impact on Mount Kilimanjaro calculated

Date:
March 9, 2011
Source:
University of Alabama Huntsville
Summary:
The impact that local deforestation might have on the snowcap and glaciers atop Mount Kilimanjaro are being calculated using regional climate models and data from NASA satellites.

The current glaciers of Kilimanjaro, made famous by an Ernest Hemingway short story in 1936 and a movie released in 1952, are almost 12,000 years old. About 16,000 years ago, during the most recent ice age, Kilimanjaro's glaciers covered up to 150 square kilometers and reached from the summit (19,298 feet above sea level) to the surrounding plain more than 9,000 feet below.
Credit: Image courtesy of University of Alabama HuntsvilleImage courtesy of University of Alabama Huntsville

The impact that local deforestation might have on the snowcap and glaciers atop Mount Kilimanjaro are being calculated at The University of Alabama in Huntsville using regional climate models and data from NASA satellites.

The first piece of that research, which looked only at the month of July, found that deforestation is changing weather patterns around the mountain but not (at least in July) at the peak, according to Dr. Udaysankar Nair, a research scientist in UAHuntsville's Earth System Science Center.

Early results from this work, which is funded through NASA's Earth Science Directorate, were published Feb. 15 in the Journal of Geophysical Research.

The current glaciers of Kilimanjaro, made famous by an Ernest Hemingway short story in 1936 and a movie released in 1952, are almost 12,000 years old. At their maximum, the mountain's glaciers and ice cap covered about 400 square kilometers and reached from the summit (19,298 feet above sea level) to the surrounding plain more than 9,000 feet below. About 16,000 years ago, during the most recent ice age, Kilimanjaro's glaciers covered up to 150 square kilometers.

A tiny fraction of that ice cap still exists. Surveys in the 1880s estimated that glaciers covered about 20 square kilometers on the mountain. From 1912 to now, the glacier area on Kilimanjaro has decreased from 12 square kilometers to less than two.

Nair and doctoral student Jonathan Fairman, a NASA Earth system science fellow, are studying the effects of deforestation on weather patterns in a 2,000-square-mile area around the mountain.

In collaboration with UAHuntsville's Dr. Sundar Christopher and Dr. Thomas Mölg at the University of Innsbruck, Austria, they use data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard two NASA satellites to determine the surface characteristics of both forested and deforested land in the area around the mountain.

That data is used to digitally add or remove tracts of indigenous land cover within computer models of the regional weather. That lets them compare existing weather patterns to patterns that might exist if no trees had been cut down or if all of the surrounding forests were razed. The UAHuntsville team also uses MODIS data to evaluate how well the model simulates cloud formation and weather patterns over Kilimanjaro under current conditions.

They decided to start by looking at July, during the summer "dry" season. That is when weather around the mountain is influenced least by large-scale regional weather systems from the Indian Ocean.

"We figured that the impact of local systems -- such as deforestation -- would be greater when large scale weather events aren't there," Nair explained.

In July the prevailing wind across the high plains of northern Tanzania is from the south. The models show that during that month deforestation around the mountain is shifting cloud cover and precipitation up the south side of the mountain. Modeling of weather patterns on the windward side of Kilimanjaro shows a decrease in rain and cloudiness at levels up to 6,500 feet above sea level, but an increase in rainfall and cloud cover from 6,500 to about 13,000 high.

July rainfall on the north side of the mountain has decreased at higher elevations (5,850 to 13,000 feet) in response to deforestation. There is little precipitation at the peak during July and the models indicate that hasn't changed in response to deforestation.

"Kilimanjaro is an isolated mountain, so under normal circumstances most of the local air flow goes around the mountain," Nair said. "When you cut down forests you reduce surface roughness, which increases wind speed at higher elevations on the windward slopes. That faster wind over steep upper slopes causes more intense cloud formation and precipitation up the side of the mountain." Nair and Fairman are extending their model runs to include the fall and spring rainy seasons, when the dominant weather rolls in from the Indian Ocean.

"We need to look at the complete annual cycle before we understand the impacts that deforestation is having on the mountain peak," Fairman said.

Early results suggest that deforestation around Kilimanjaro might be having a noticeable impact on how quickly glaciers and ice are melting on the mountain, although it isn't clear from preliminary data modeling whether that impact is positive or negative.

"When we look beyond the summer dry season, our results suggest that regional deforestation has the potential to either mitigate or enhance large scale climate change," said Nair. "In some places, like Costa Rica, deforestation clearly adds to the effects of climate change. For Kilimanjaro, we expect our extended model simulations to reveal whether deforestation will worsen or mitigate large scale changes."

Earlier research by Nair and other scientists at UAHuntsville found that deforestation in Costa Rica is increasing some impacts of large-scale climate change in the mountain range that is home to that country's cloud forests. Unlike Kilimanjaro, however, the Costa Rican mountains are a range that the prevailing wind cannot blow around.


Story Source:

The above story is based on materials provided by University of Alabama Huntsville. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. G. Fairman, U. S. Nair, S. A. Christopher, and T. Mölg. Land use change impacts on regional climate over Kilimanjaro. J. Geophys. Res., 2011; 116: D03110 DOI: 10.1029/2010JD014712

Cite This Page:

University of Alabama Huntsville. "Deforestation's impact on Mount Kilimanjaro calculated." ScienceDaily. ScienceDaily, 9 March 2011. <www.sciencedaily.com/releases/2011/03/110305112136.htm>.
University of Alabama Huntsville. (2011, March 9). Deforestation's impact on Mount Kilimanjaro calculated. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2011/03/110305112136.htm
University of Alabama Huntsville. "Deforestation's impact on Mount Kilimanjaro calculated." ScienceDaily. www.sciencedaily.com/releases/2011/03/110305112136.htm (accessed April 19, 2014).

Share This



More Earth & Climate News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drought Concerns May Hurt Lake Tourism

Drought Concerns May Hurt Lake Tourism

AP (Apr. 18, 2014) — Operators of recreational businesses on western reservoirs worry that ongoing drought concerns will keep boaters and other visitors from flocking to the popular summer attractions. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) — Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) — Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Ark. Man Finds 6-Carat Diamond At State Park

Ark. Man Finds 6-Carat Diamond At State Park

Newsy (Apr. 18, 2014) — An Arkansas man has found a nearly 6.2-carat diamond, which he dubbed "The Limitless Diamond," at the Crater of Diamonds State Park. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins