Featured Research

from universities, journals, and other organizations

Earth recovered from prehistoric global warming faster than previously thought

Date:
April 21, 2011
Source:
Purdue University
Summary:
Earth may be able to recover from rising carbon dioxide emissions faster than previously thought, according to evidence from a prehistoric event. When faced with high levels of atmospheric carbon dioxide and rising temperatures 56 million years ago, Earth increased its ability to pull carbon from the air. This led to a recovery that was quicker than anticipated by many models of the carbon cycle.

Earth may be able to recover from rising carbon dioxide emissions faster than previously thought, according to evidence from a prehistoric event. When faced with high levels of atmospheric carbon dioxide and rising temperatures 56 million years ago, Earth increased its ability to pull carbon from the air.
Credit: Argus / Fotolia

Earth may be able to recover from rising carbon dioxide emissions faster than previously thought, according to evidence from a prehistoric event analyzed by a Purdue University-led team.

When faced with high levels of atmospheric carbon dioxide and rising temperatures 56 million years ago, Earth increased its ability to pull carbon from the air. This led to a recovery that was quicker than anticipated by many models of the carbon cycle -- though still on the order of tens of thousands of years, said Gabriel Bowen, the associate professor of earth and atmospheric sciences who led the study.

"We found that more than half of the added carbon dioxide was pulled from the atmosphere within 30,000 to 40,000 years, which is one-third of the time span previously thought," said Bowen, who also is a member of the Purdue Climate Change Research Center. "We still don't know exactly where this carbon went, but the evidence suggests it was a much more dynamic response than traditional models represent."

Bowen worked with James Zachos, a professor of earth and planetary sciences at the University of California, Santa Cruz, to study the end of the Palaeocene-Eocene Thermal Maximum, an approximately 170,000-year-long period of global warming that has many features in common with the world's current situation, he said.

"During this prehistoric event billions of tons of carbon was released into the ocean, atmosphere and biosphere, causing warming of about 5 degrees Celsius," Bowen said. "This is a good analog for the carbon being released from fossil fuels today."

Scientists have known of this prehistoric event for 20 years, but how the system recovered and returned to normal atmospheric levels has remained a mystery.

Bowen and Zachos examined samples of marine and terrestrial sediments deposited throughout the event. The team measured the levels of two different types of carbon atoms, the isotopes carbon-12 and carbon-13. The ratio of these isotopes changes as carbon dioxide is drawn from or added to the atmosphere during the growth or decay of organic matter.

Plants prefer carbon-12 during photosynthesis, and when they accelerate their uptake of carbon dioxide it shifts the carbon isotope ratio in the atmosphere. This shift is then reflected in the carbon isotopes present in rock minerals formed by reactions involving atmospheric carbon dioxide, Bowen said.

"The rate of the carbon isotope change in rock minerals tells us how rapidly the carbon dioxide was pulled from the atmosphere," he said. "We can see the fluxes of carbon dioxide in to and out of the atmosphere. At the beginning of the event we see a shift indicating that a lot of organic-derived carbon dioxide had been added to the atmosphere, and at the end of the event we see a shift indicating that a lot of carbon dioxide was taken up as organic carbon and thus removed from the atmosphere."

A paper detailing the team's National Science Foundation-funded work was published in Nature Geoscience.

It had been thought that a slow and fairly constant recovery began soon after excess carbon entered the atmosphere and that the weathering of rocks, called silicate weathering, dictated the timing of the response.

Atmospheric carbon dioxide that reacts with silicon-based minerals in rocks is pulled from the air and captured in the end product of the reaction. This mechanism has a fairly direct correlation with the amount of carbon dioxide in the atmosphere and occurs relatively slowly, Bowen said.

The changes Bowen and Zachos found during the Palaeocene-Eocene Thermal Maximum went beyond the effects expected from silicate weathering, he said.

"It seems there was actually a long period of higher levels of atmospheric carbon dioxide followed by a short and rapid recovery to normal levels," he said. "During the recovery, the rate at which carbon was pulled from the atmosphere was an order of magnitude greater than the slow drawdown of carbon expected from silicate weathering alone."

A rapid growth of the biosphere, with a spread of forests, plants and carbon-rich soils to take in the excess carbon dioxide, could explain the quick recovery, Bowen said.

"Expansion of the biosphere is one plausible mechanism for the rapid recovery, but in order to take up this much carbon in forests and soils there must have first been a massive depletion of these carbon stocks," he said. "We don't currently know where all the carbon that caused this event came from, and our results suggest the troubling possibility that widespread decay or burning of large parts of the continental biosphere may have been involved."

Release from a different source, such as volcanoes or sea floor sediments, may have started the event, he said.

"The release of carbon from the biosphere may have occurred as a positive feedback to the warming," Bowen said. "The forests may have dried out, which can lead to die off and forest fires. If we take the Earth's future climate to a place where that feedback starts to happen we could see accelerated rates of climate change."

The team continues to work on new models of the carbon cycle and is also investigating changes in the water cycle during the Palaeocene-Eocene Thermal Maximum.

"We need to figure out where the carbon went all those years ago to know where it could go in the future," he said. "These findings show that the Earth's response is much more dynamic than we thought and highlight the importance of feedback loops in the carbon cycle."


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gabriel J. Bowen, James C. Zachos. Rapid carbon sequestration at the termination of the Palaeocene–Eocene Thermal Maximum. Nature Geoscience, 2010; 3 (12): 866 DOI: 10.1038/ngeo1014

Cite This Page:

Purdue University. "Earth recovered from prehistoric global warming faster than previously thought." ScienceDaily. ScienceDaily, 21 April 2011. <www.sciencedaily.com/releases/2011/04/110421151919.htm>.
Purdue University. (2011, April 21). Earth recovered from prehistoric global warming faster than previously thought. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2011/04/110421151919.htm
Purdue University. "Earth recovered from prehistoric global warming faster than previously thought." ScienceDaily. www.sciencedaily.com/releases/2011/04/110421151919.htm (accessed July 29, 2014).

Share This




More Earth & Climate News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Climate Change Could Cost Billions According To White House

Climate Change Could Cost Billions According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Jane Goodall Warns Great Apes Face Extinction

Jane Goodall Warns Great Apes Face Extinction

AFP (July 29, 2014) The world's great apes face extinction within decades, renowned chimpanzee expert Jane Goodall warned Tuesday in a call to arms to ensure man's closest relatives are not wiped out. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com
Rat Infestation at Paris' Tuileries Garden

Rat Infestation at Paris' Tuileries Garden

AFP (July 29, 2014) An infestation of rats is causing concern among tourists at Paris' most famous park -- the Tuileries garden next to the Louvre Museum. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins