Featured Research

from universities, journals, and other organizations

Signaling pathway reveals mechanism for B cell differentiation in immune response

Date:
April 22, 2011
Source:
RIKEN
Summary:
Scientists have clarified for the first time the mechanism governing differentiation of B cells into antibody-producing plasma cells. The finding establishes a role for the extracellular signal-regulated kinase (ERK) signaling pathway in B cell differentiation, a key step toward the development of B cell-targeted drugs for treatment of autoimmune diseases and allergies.

ERK KO mice showed impaired IgG1 antibody production Wild type and ERK KO mice were immunized and the number of antigen-specific IgG1 antibody-secreting cells (ASC) (left) and antibody titer in sera was measured (right). Both the number of ASC and antibody titers were reduced in ERK KO mice.
Credit: Image courtesy of RIKEN

An article in Science Signaling by researchers at the RIKEN Research Center for Allergy and Immunology (RCAI) has clarified for the first time the mechanism governing differentiation of B cells into antibody-producing plasma cells. The finding establishes a role for the extracellular signal-regulated kinase (ERK) signaling pathway in B cell differentiation, a key step toward the development of B cell-targeted drugs for treatment of autoimmune diseases and allergies.

As the only cells in the body that produce antibodies, B cells play an essential role in the immune system's defense against bacteria and viruses. Differentiation of B cells into antibody-producing plasma cells is central to this role, initiating the production of antibodies whose targeted binding mechanism enables the immune system to identify and neutralize foreign objects. The mechanism underlying this differentiation process, however, remains unknown.

To better understand this mechanism, the research group focused on the signaling of the extracellular signal-regulated kinases (ERK), intracellular signaling molecules known to play an important role in the cell cycle and survival of immune cells. Hoping to glean insights into the role of ERKs in B cell differentiation into plasma cells, the researchers generated mice deficient in two different ERKs, ERK1 and ERK2, and studied the effect of this deficiency on the fate of B cells.

What they found confirmed that ERKs are in fact essential to B cell differentiation: B cells in mice without these key molecules were unable to form plasma cells. The researchers further traced this observation to a gene called Prdm1 encoding the protein BLIMP-1, increased expression of which leads to differentiation and proliferation of plasma cells in B cell immune response. ERKs, they discovered, phosphorylate the transcription factor Elk1, which leads to expression of Blimp-1.

By elucidating the role of ERKs in B cell differentiation, the current research provides valuable insight into a little-understood area of immune response, promising advances in drug discovery and offering hope to autoimmune disease and allergy sufferers around the world.


Story Source:

The above story is based on materials provided by RIKEN. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. Yasuda, K. Kometani, N. Takahashi, Y. Imai, Y. Aiba, T. Kurosaki. ERKs Induce Expression of the Transcriptional Repressor Blimp-1 and Subsequent Plasma Cell Differentiation. Science Signaling, 2011; 4 (169): ra25 DOI: 10.1126/scisignal.2001592

Cite This Page:

RIKEN. "Signaling pathway reveals mechanism for B cell differentiation in immune response." ScienceDaily. ScienceDaily, 22 April 2011. <www.sciencedaily.com/releases/2011/04/110422090159.htm>.
RIKEN. (2011, April 22). Signaling pathway reveals mechanism for B cell differentiation in immune response. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2011/04/110422090159.htm
RIKEN. "Signaling pathway reveals mechanism for B cell differentiation in immune response." ScienceDaily. www.sciencedaily.com/releases/2011/04/110422090159.htm (accessed April 20, 2014).

Share This



More Plants & Animals News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins