Featured Research

from universities, journals, and other organizations

From gene to protein: Control is mainly in the cytoplasm, not cell nucleus

Date:
May 20, 2011
Source:
Helmholtz Association of German Research Centres
Summary:
How do genes control us? This fundamental question still remains elusive despite decades of research. Genes are blueprints for proteins, but it is the proteins that actually carry out vital functions. But how is protein production controlled? Researchers have now comprehensively quantified gene expression for the first time and found out that control mainly occurs in the cytoplasm of the cell and not in the cell nucleus.

How do genes control us? This fundamental question of life still remains elusive despite decades of research. Genes are blueprints for proteins, but it is the proteins that actually carry out vital functions in the body for maintaining life. Diseases such as cancer are not only characterized by altered genes, but also by disturbed protein production. But how is protein production controlled? Researchers of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch of the Helmholtz Association, Germany, have now comprehensively quantified gene expression (the activation of a gene for protein production) for the first time.

According to their latest findings, control mainly occurs in the cytoplasm of the cell and not in the 'high-security tract' of the cell nucleus. The results also highlight where gene expression can get out of control.

The research was enabled by the close collaboration of a team led by the biologists Björn Schwanhäusser and Matthias Selbach, the biomathematician Jana Wolf (all MDC) and the biotechnologist Wei Chen of the Berlin Institute for Medical Systems Biology (BIMSB) of the MDC.

Proteins are the major building blocks of life. "They control virtually all biological processes ranging from heartbeat and oxygen transport up to and including thinking," Matthias Selbach explained. The blueprint for proteins is stored in the genes in the cell nucleus. The messenger RNA (mRNA) formed in the cell nucleus (transcription) brings a copy of the blueprint to the protein factories of the cell in the cytoplasm, to the ribosomes. There the information of the mRNAs is used for protein production (translation). The fundamental question was which of the two processes, i.e. transcription or translation, plays the dominant role in regulating cellular protein levels.

The starting point of the MDC researchers was to measure the turnover of cellular mRNAs and proteins and mRNA and protein levels. They used high-throughput technologies such as quantitative mass spectrometry and the latest sequencing techniques, which are available close by at the MDC / BIMSB. In total, they quantified proteins and mRNAs for more than 5,000 genes. By means of mathematical modeling, the researchers drew conclusions from the collected data about the control of protein levels. Intriguingly, they observed that cellular protein levels mainly depend on translation of mRNAs in the protein factories of the cytoplasm. "The ribosomes ultimately determine protein abundance. Some mRNAs are translated into only one protein per hour, others are translated 200 times," Matthias Selbach said.

Cells work in an energy-efficient way

Furthermore, the researchers found that cells use their resources very efficiently. Most mRNAs and proteins of abundantly expressed housekeeping genes (these genes maintain the normal operations of the body) are very stable. In this way the cell saves valuable energy, because protein production consumes many resources. In contrast, proteins responsible for rapid signaling processes are typically unstable. Cells can therefore quickly adapt to changes in their surroundings. This may also explain why the decisive control step takes place in the cytoplasm and not in the nucleus. Since it constitutes the last step in the production chain, this allows cells to respond dynamically to their environment.

The researchers hope their results will also be relevant for diseases. "So far, this is purely basic research," Matthias Selbach stressed. "But we also know that the production of proteins is disturbed in many diseases, for example cancer." Very little is known about where the process gets out of control. Until now, researchers focused almost exclusively on the nucleus to find answers to this question. The new findings, however, show that the protein factories in the cytoplasm are of great significance. Perhaps this is where the key to understanding diseases can be found.


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal Reference:

  1. Björn Schwanhäusser, Dorothea Busse, Na Li, Gunnar Dittmar, Johannes Schuchhardt, Jana Wolf, Wei Chen, Matthias Selbach. Global quantification of mammalian gene expression control. Nature, 2011; 473 (7347): 337 DOI: 10.1038/nature10098

Cite This Page:

Helmholtz Association of German Research Centres. "From gene to protein: Control is mainly in the cytoplasm, not cell nucleus." ScienceDaily. ScienceDaily, 20 May 2011. <www.sciencedaily.com/releases/2011/05/110518131429.htm>.
Helmholtz Association of German Research Centres. (2011, May 20). From gene to protein: Control is mainly in the cytoplasm, not cell nucleus. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2011/05/110518131429.htm
Helmholtz Association of German Research Centres. "From gene to protein: Control is mainly in the cytoplasm, not cell nucleus." ScienceDaily. www.sciencedaily.com/releases/2011/05/110518131429.htm (accessed August 30, 2014).

Share This




More Plants & Animals News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) — State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Raw: Australian Sheep Gets Long Overdue Haircut

Raw: Australian Sheep Gets Long Overdue Haircut

AP (Aug. 28, 2014) — Hoping to break the record for world's wooliest, Shaun the sheep came up 10 pounds shy with his fleece weighing over 50 pounds after being shorn for the first time in years. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Minds Blown: Scientists Develop Fish That Walk On Land

Minds Blown: Scientists Develop Fish That Walk On Land

Newsy (Aug. 28, 2014) — Canadian scientists looking into the very first land animals took a fish out of water and forced it to walk. Video provided by Newsy
Powered by NewsLook.com
Huge Ancient Wine Cellar Found In Israel

Huge Ancient Wine Cellar Found In Israel

Newsy (Aug. 28, 2014) — An international team uncovered a large ancient wine celler that likely belonged to a Cannonite ruler. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins