Featured Research

from universities, journals, and other organizations

Mechanics of speciation: Model examines factors that contribute to emergence of new species

Date:
June 27, 2011
Source:
National Institute for Mathematical and Biological Synthesis (NIMBioS)
Summary:
Mate choice, competition, and the variety of resources available are the key factors influencing how a species evolves into separate species, according to a new mathematical model that integrates all three factors to reveal the dynamics at play in a process called sympatric speciation.

The Rhagoleitis pomonella fruit fly (pictured above) might be currently undergoing sympatric speciation. Credit:
Credit: Joseph Berger, Bugwood.org

Mate choice, competition, and the variety of resources available are the key factors influencing how a species evolves into separate species, according to a new mathematical model that integrates all three factors to reveal the dynamics at play in a process called sympatric speciation.

The paper appears in the Journal of Evolutionary Biology.

New species more commonly occur when plants or animals cannot interbreed because of strong mate choice, and therefore they become isolated genetically. A less common type of speciation, called "sympatric," occurs when a new species arises from a single population that has no geographic or physical barriers. A famous example is the Rhagoleitis pomonella fruit fly that originally feasted on the fruit of hawthorn trees, then shifted and began to feed on apples, evolving into a more genetically distinct type of fly.

The new model integrates three key factors that can lead to sympatric speciation: the degree to which male foraging traits influence female mate choice, the degree to which different individuals compete for resources, and the variety of resources available. By incorporating three different factors together, the study's authors, Xavier Thibert-Plante, a postdoctoral fellow at the National Institute for Mathematical and Biological Synthesis, and Andrew P. Hendry, an associate professor at McGill University, have taken a different more inclusive approach than in previous studies, which examine one or a few primary factors.

"This way we can consider the effects of multiple factors and their interactions simultaneously. At the very least, having a variety of resources available in the model is a productive way of generating insights into biological diversity," Thibert-Plante said.

According to the results, competition was much less important factor for sympatric speciation to occur than strong mate choice and the variety of resources available.

Yet, even under ideal conditions, sympatric speciation occurred only a fraction of the time in the model. But that does not mean sympatric speciation is not impossible in nature, the authors argue. "Mate choice allows the population to specialize to different resources and become reproductively isolated," Thibert-Plante said.


Story Source:

The above story is based on materials provided by National Institute for Mathematical and Biological Synthesis (NIMBioS). Note: Materials may be edited for content and length.


Journal Reference:

  1. Thibert-Plante X, Hendry AP. Factors influencing progress toward sympatric speciation. Journal of Evolutionary Biology, 2011; DOI: 10.1111/j.1420-9101.2011.02348.x

Cite This Page:

National Institute for Mathematical and Biological Synthesis (NIMBioS). "Mechanics of speciation: Model examines factors that contribute to emergence of new species." ScienceDaily. ScienceDaily, 27 June 2011. <www.sciencedaily.com/releases/2011/06/110624111936.htm>.
National Institute for Mathematical and Biological Synthesis (NIMBioS). (2011, June 27). Mechanics of speciation: Model examines factors that contribute to emergence of new species. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2011/06/110624111936.htm
National Institute for Mathematical and Biological Synthesis (NIMBioS). "Mechanics of speciation: Model examines factors that contribute to emergence of new species." ScienceDaily. www.sciencedaily.com/releases/2011/06/110624111936.htm (accessed October 1, 2014).

Share This



More Plants & Animals News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Dolphins Might Use Earth's Magnetic Field As A GPS

Dolphins Might Use Earth's Magnetic Field As A GPS

Newsy (Sep. 30, 2014) A study released Monday suggests dolphins might be able to sense the Earth's magnetic field and possibly use it as a means of navigation. Video provided by Newsy
Powered by NewsLook.com
How To Battle Stink Bug Season

How To Battle Stink Bug Season

Newsy (Sep. 30, 2014) Homeowners in 33 states grapple with stink bugs moving indoors at this time of year. Here are a few tips to avoid stink bug infestations. Video provided by Newsy
Powered by NewsLook.com
California University Designs Sustainable Winery

California University Designs Sustainable Winery

Reuters - US Online Video (Sep. 27, 2014) Amid California's worst drought in decades, scientists at UC Davis design a sustainable winery that includes a water recycling system. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins