Featured Research

from universities, journals, and other organizations

Protein structure of key molecule in DNA transcription system deciphered

Date:
July 4, 2011
Source:
Indiana University School of Medicine
Summary:
Scientists have deciphered the structure of an essential part of Mediator, a complex molecular machine that plays a vital role in regulating the transcription of DNA.

Scientists have deciphered the structure of an essential part of Mediator, a complex molecular machine that plays a vital role in regulating the transcription of DNA.
Credit: Indiana University School of Medicine

Scientists have deciphered the structure of an essential part of Mediator, a complex molecular machine that plays a vital role in regulating the transcription of DNA.

Related Articles


The research adds an important link to discoveries that have enabled scientists to gain a deeper understanding of how cells translate genetic information into the proteins and processes of life. The findings, published in the July 3 advance online issue of the journal Nature, were reported by a research team led by Yuichiro Takagi, Ph.D., assistant professor of biochemistry and molecular biology at Indiana University School of Medicine.

The fundamental operations of all cells are controlled by the genetic information -- the genes -stored in each cell's DNA, a long double-stranded chain. Information copied from sections of the DNA -- through a process called transcription -- leads to synthesis of messenger RNA, eventually enabling the production of proteins necessary for cellular function. Transcription is undertaken by the enzyme called RNA polymerase II.

As cellular operations proceed, signals are sent to the DNA asking that some genes be activated and others be shut down. The Mediator transcription regulator accepts and interprets those instructions, telling RNA polymerase II where and when to begin the transcription process.

Mediator is a gigantic molecular machine composed of 25 proteins organized into three modules known as the head, the middle, and the tail. Using X-ray crystallography, the Takagi team was able to describe in detail the structure of the Mediator Head module, the most important for interactions with RNA polymerase II.

"It's turned out to be extremely novel, revealing how a molecular machine is built from multiple proteins," said Takagi.

"As a molecular machine, the Mediator head module needs to have elements of both stability and flexibility in order to accommodate numerous interactions. A portion of the head we named the neck domain provides the stability by arranging the five proteins in a polymer-like structure," he said.

"We call it the alpha helical bundle," said Dr. Takagi. "People have seen structures of alpha helical bundles before but not coming from five different proteins."

"This is a completely noble structure," he said.

One immediate benefit of the research will be to provide detailed mapping of previously known mutations that affect the regulation of the transcription process, he said.

The ability to solve such complex structures will be important because multi-protein complexes such as Mediator will most likely become a new generation of drug targets for treatment of disease, he said.

Previously, the structure of RNA polymerase II was determined by Roger Kornberg of Stanford University, with whom Dr. Takagi worked prior to coming to IU School of Medicine. Kornberg received the Nobel Prize in 2006 for his discoveries. The researchers who described the structure of the ribosome, the protein production machine, were awarded the Nobel Prize in 2009. The structure of the entire Mediator has yet to be described, and thus remains the one of grand challenges in structure biology. Dr. Takagi's work on the Mediator head module structure represents a major step towards a structure determination of the entire Mediator.

In addition to Dr. Takagi as a senior author, the lead author for the Nature paper was Tsuyoshi Imasaki, Ph.D., of the IU School of Medicine. Other collaborators included researchers at The Scripps Research Institute, Stanford University, Memorial Sloan-Kettering Cancer Center and the European Molecular Biology Laboratory.

Funding for the research was supplied by grants from the National Science Foundation, the American Heart Association, Human Frontier Science Program, the National Institutes of Health, the National Cancer Institute and the European Commission.


Story Source:

The above story is based on materials provided by Indiana University School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tsuyoshi Imasaki, Guillermo Calero, Gang Cai, Kuang-Lei Tsai, Kentaro Yamada, Francesco Cardelli, Hediye Erdjument-Bromage, Paul Tempst, Imre Berger, Guy Lorch Kornberg, Francisco J. Asturias, Roger D. Kornberg & Yuichiro Takagi. Architecture of the Mediator head module. Nature, July 3, 2011 DOI: 10.1038/nature10162

Cite This Page:

Indiana University School of Medicine. "Protein structure of key molecule in DNA transcription system deciphered." ScienceDaily. ScienceDaily, 4 July 2011. <www.sciencedaily.com/releases/2011/07/110703133833.htm>.
Indiana University School of Medicine. (2011, July 4). Protein structure of key molecule in DNA transcription system deciphered. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2011/07/110703133833.htm
Indiana University School of Medicine. "Protein structure of key molecule in DNA transcription system deciphered." ScienceDaily. www.sciencedaily.com/releases/2011/07/110703133833.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com
Flu Outbreak Closing Schools in Ohio

Flu Outbreak Closing Schools in Ohio

AP (Dec. 17, 2014) A wave of flu illnesses has forced some Ohio schools to shut down over the past week. State officials confirmed one pediatric flu-related death, a 15-year-old girl in southern Ohio. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins