Featured Research

from universities, journals, and other organizations

Origami in seed capsules: Lids on seed cases of the ice plant unfold when honeycomb structure swells inside them

Date:
July 18, 2011
Source:
Max Planck Institute of Colloids and Interfaces
Summary:
A number of plants disperse their seeds in a rather artistic way: the seed capsules of the ice plant Delosperma nakurense, for instance, unfold lids over the seed compartments in the manner of a movable origami when they are moistened by rain.

The seed capsule of the ice plant D. nakurense opens at the right moment. When conditions are dry, five lids seal the capsule (left). When it rains, the five lids of the capsule open (right). Pressure is applied to them by a swellable tissue that becomes saturated with water.
Credit: © Matt Harrington / MPI of Colloids and Interfaces

A number of plants disperse their seeds in a rather artistic way: the seed capsules of the ice plant Delosperma nakurense, for instance, unfold lids over the seed compartments in the manner of a movable origami when they are moistened by rain. This is the finding of researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam and the Technische Universitδt Dresden in a precise investigation of the opening mechanism. The lids open up because cells on the inside of them absorb water and change their structure. The plant, which grows in very arid regions, thereby ensures that its seeds have a good chance of opening. The researchers are keen to use this model to develop materials that move when they become wet or when their temperature changes.

Some plants do not need living cells that promote movement with their metabolism in order to react. Awns bend when they are wet; cones open when they dry in air. "In the seed compartments of Delosperma nakurense, we have observed a highly complex movement of plant material that is no longer living," says Ingo Burgert. The scientist heads a research group in Peter Fratzl's Biomaterials Department at the Max Planck Institute of Colloids and Interfaces, and along with Christoph Neinhuis of the TU Dresden had the idea of researching the opening mechanism of the seed capsules of D. nakurense.

The research team has discovered that the lids of the seed capsules unfold on a kind of hinge when they are wet; conversely, they close again once they dry. This also changes the curvature of the lids so that the valves tightly seal the seed compartments in dry conditions. The curvature also prevents a seal opening accidentally. "This is in fact a coordinated folding mechanism in two directions, which we know from movable origami," explains Matthew Harrington who, together with his colleagues, has analysed this movement in detail. The five lids of the seed capsule therefore become deformed because of their refined structure and a clever combination of the properties of various biological materials.

The lids have a triangular shape, so that the seed capsule, in its opened state, is reminiscent of a five-pointed star. They have a highly swellable tissue on the side which, in the closed state, points downwards, and in the open state, upwards. The tissue is divided into two halves and runs on the open lids -- thus when the capsule is wet -- from inside to outside. The two halves then close to a narrow ridge. In dry conditions, a split separates the two halves of the tissue. In these splits are, in the dry state, the partition walls of the five seed compartments, so that the compartments are tightly sealed.

Swelling cellulose opens the seed capsule

When the lid opens, it deforms particularly where it is attached to the capsule. "This section acts like a hinge," explains Matthew Harrington. How the seal opens, however, only became apparent to the researchers when they looked very closely at the structure of the swellable tissue. This consists namely of upward-opening, more or less hexagonal cells that form a honeycomb structure.

The opening mechanism only functions, however, because the cells are constructed of two different materials, as the researchers discovered in spectroscopic investigations. The cell walls consist essentially of cellulose and lignin, a major component of wood. Lignin absorbs little water, but inside the cell there is cellulose without lignin; this soaks up a lot of water and thus swells considerably. The machine is then complete, folding an origami virtually by water power. "When the cellulose expands, the hexagonal cells extend predominantly in the longitudinal direction of the lid," explains Matthew Harrington. The honeycomb structure expands in this direction and thus presses on the lid. Conversely, the valve closes again when the cellulose dries and the honeycomb structure contracts.

"The mechanism is interesting for technical applications because the energy for the directed movement is already stored in the material," says Peter Fratzl. As part of the focus program "Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials" funded by the DFG 1420, the scientists are now keen to transfer this concept to a technology that could be used for example in biomedicine or architecture. The principle can also be transferred to materials that expand or contract in very different ways when the temperature changes: for example, an awning unfolding by itself over the patio when the sun becomes uncomfortably hot.


Story Source:

The above story is based on materials provided by Max Planck Institute of Colloids and Interfaces. Note: Materials may be edited for content and length.


Journal Reference:

  1. Matthew J. Harrington, Khashayar Razghandi, Friedrich Ditsch, Lorenzo Guiducci, Markus Rueggeberg, John W.C. Dunlop, Peter Fratzl, Christoph Neinhuis, Ingo Burgert. Origami-like unfolding of hydro-actuated ice plant seed capsules. Nature Communications, 2011; 2: 337 DOI: 10.1038/ncomms1336

Cite This Page:

Max Planck Institute of Colloids and Interfaces. "Origami in seed capsules: Lids on seed cases of the ice plant unfold when honeycomb structure swells inside them." ScienceDaily. ScienceDaily, 18 July 2011. <www.sciencedaily.com/releases/2011/07/110705071525.htm>.
Max Planck Institute of Colloids and Interfaces. (2011, July 18). Origami in seed capsules: Lids on seed cases of the ice plant unfold when honeycomb structure swells inside them. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2011/07/110705071525.htm
Max Planck Institute of Colloids and Interfaces. "Origami in seed capsules: Lids on seed cases of the ice plant unfold when honeycomb structure swells inside them." ScienceDaily. www.sciencedaily.com/releases/2011/07/110705071525.htm (accessed September 15, 2014).

Share This



More Plants & Animals News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Conservationists Face Uphill PR Battle With New Shark Rules

Conservationists Face Uphill PR Battle With New Shark Rules

Newsy (Sep. 14, 2014) — New conservation measures for shark fishing face an uphill PR battle in the fight to slow shark extinction. Video provided by Newsy
Powered by NewsLook.com
Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) — A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com
Lion Cubs the Pride of San Diego Zoo

Lion Cubs the Pride of San Diego Zoo

Reuters - US Online Video (Sep. 13, 2014) — Roars of excitement as a proud lioness shows off her four cubs at the San Diego Zoo Safari Park. Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
'Magic Mushrooms' Could Help Smokers Quit

'Magic Mushrooms' Could Help Smokers Quit

Newsy (Sep. 11, 2014) — In a small study, researchers found that the majority of long-time smokers quit after taking psilocybin pills and undergoing therapy sessions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins